Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Steered molecular dynamics simulations of protein-ligand interactions


Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dynamics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be accessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of binding and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APAfrom HIV-1 reverse transcriptase.

This is a preview of subscription content, log in to check access.


  1. 1.

    Hermans, J., Mann, G., Wang, L. et al., Simulation studies of pro-tein-ligand interactions, Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering (eds. Deuhard, P., Hermans, J., Leimkuhler, B. etal.), Berlin: Springer-Verlag, 1998, 129–148.

  2. 2.

    Izrailev, S., Stepaniants, S., Isralewitz, B. et al., Steered molecular dynamics, Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering (eds. Deuhard, P., Hermans, J., Leimkuhler, B. et al.), Berlin: Springer-Verlag, 1998, 39–65.

  3. 3.

    Binning, G., Quate, C. F., Gerber, C., Atomic force microscope, Phys. Rev. Lett., 1986, 56(9): 930–933.

  4. 4.

    Florin, E. L., Moy, V. T., Gaub, H. E., Adhesion force between individual ligand-receptor pairs, Science, 1994, 264(5157): 415–417.

  5. 5.

    Simonson, T., Archontis, G., Karplus, M., Free energy simulations come of age: protein-ligand recognition, Acc. Chem. Res., 2002, 35(6): 430–437.

  6. 6.

    Aqvist, J., Luzhkov, V. B., Brandsdal, B. O., Ligand binding affinities from MD simulations, Acc. Chem. Res., 2002, 35(6): 358–365.

  7. 7.

    Alder, B. J., Wainwright, T. E., Studies in molecular dynamics. 1.General method, J. Chem. Phys., 1959, 31(2): 459–466.

  8. 8.

    Rahman, A., Correlations in motion of atoms in liquid argon, Phys. Rev., 1964, 136(2A): 405–411.

  9. 9.

    Rahman, A., Stillinger, F. H., Molecular dynamics study of liquid water, J. Chem. Phys., 1971, 55(7): 3336–3359.

  10. 10.

    McCammon, J. A., Gelin, B. R., Karplus, M., Dynamics of folded proteins, Nature, 1977, 267(5612): 585–590.

  11. 11.

    Karplus, M., McCammon, J. A., Molecular dynamics simulations of biomolecules, Nat. Struct. Biol., 2002, 9(9): 646–652.

  12. 12.

    Duan, Y., Kollman, P. A., Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science, 1998, 282(5389): 740–744.

  13. 13.

    Polanyi, J., Zewail, A. H., Direct observation of the transition-state, Acc. Chem. Res., 1995, 28(3): 119–132.

  14. 14.

    Lim, M., Jackson, T. A., Anfinrud, P. A., Binding of CO to myoglobin from a haem pocket docking site to form nearly linear Fe-C-O, Science, 1995, 269(5226): 962–966.

  15. 15.

    de Groot, B. L., Grubmuller, H., Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF, Science, 2001, 294(5550): 2353–2356.

  16. 16.

    Dittrich, M., Hayashi, S., Schulten, K., On the mechanism of ATP hydrolysis in F1-ATPase, Biophys. J., 2003, 85(4): 2253–2266.

  17. 17.

    Grubmuller, H., Heymann, B., Tavan, P., Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force, Science, 1996, 271(5251): 997–999.

  18. 18.

    Heymann, B., Grubmuller, H., Dynamic force sepctroscopy of molecular adhesion bonds, Phys. Rev. Lett., 2000, 84(26): 6126–6129.

  19. 19.

    Engels, M., Kruger, P., Jacoby, E. et al., Targeted molecular dynamics simulation of conformational change-application to the T - R transition in insulin, Mol. Simul., 1993, 10(2-6): 291–308.

  20. 20.

    Schlitter, J., Engels, M., Kruger, P., Targeted molecular dynamics: a new approach for searching pathways of conformational transitions, J. Mol. Graph., 1994, 12(2): 84–89.

  21. 21.

    Amadei, A., Linssen, A., Berendsen, H. J. C., Essential dynamics of proteins, Proteins: Struct. Func. Gen., 1993, 17(4): 412–425.

  22. 22.

    Grubmuller, H., Predicting slow structural transitions in macromolecular systems: conformational flooding, Phys. Rev. E., 1995, 52(3): 2893–2906.

  23. 23.

    Lu, H., Isralewitz, B., Krammer, A. et al., Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J., 1998, 75(2): 662–671.

  24. 24.

    Isralewitz, B., Izrailev, S., Schulten, K., Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations, Biophys. J., 1997, 73(6): 2972–2979.

  25. 25.

    Kosztin, D., Izrailev, S., Schulten, K., Unbinding of retinoic acid from its receptor studied by steered molecular dynamics, Biophys. J.,1999,76(1): 188–197.

  26. 26.

    Isralewitz, B., Baudry, J., Gullingsrud, J. et al., Steered molecular dynamics investigations of protein function, J. Mol. Graph. Model., 2001, 19(1): 13–25.

  27. 27.

    Heymann, B., Grubmuller, H., AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations, Chem. Phys. Lett., 1999, 303(1-2): 1–9.

  28. 28.

    Shen, L. L., Shen, J. H., Luo, X. M. et al., Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT, Biophys. J., 2003, 84(6): 3547–3563.

  29. 29.

    Paci, E., Karplus, M., Forced unfolding of fibronectin type 3 modules: an analysis by biased moleculardynamics simulations, J. Mol. Biol., 1999, 288(3): 441–459.

  30. 30.

    Paci, E., Karplus, M., Unfolding proteins by external forces and temperature: the importance of topology and energetics, Proc. Natl. Acad. Sci. U.S.A., 2000, 97(12): 6521–6526.

  31. 31.

    Swamy, M. J., Thermodynamic analysis of biotin binding to avidin. A high sensitivity titration calorimetric study, Biochem. Mol. Biol. Int., 1995, 36(1): 219–225.

  32. 32.

    Miyamoto, S., Kollman, P. A., Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches, Proteins: Struct. Func. Gen., 1993, 16(3): 226–245.

  33. 33.

    Izrailev, S., Stepaniants, S., Balsera, M. et al., Molecular dynamics study of unbinding of the avidin-biotin complex, Biophys. J., 1997, 72(4): 1568–1581.

  34. 34.

    Quinn, D. M., Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition state, Chem. Rev., 1987, 87(5): 955–979.

  35. 35.

    Sussman, J. L., Harel, M., Frolow, F. et al., Atomic structure of acetylcholinesterase from Torpedo Californica: a arototypic ace-tylcholine-binding Protein, Science, 1991, 253(5022): 872–879.

  36. 36.

    Tang, X. C., Han, Y. F., Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from chinese herb, CNS Drug Review, 1999, 5(3): 281–300.

  37. 37.

    Ashani, Y., Peggins III, J. O., Doctor, B. P., Mechanism of inhibition of cholinesterases by huperzine A, Biochem. Biophys. Res. Comm., 1992, 184(2): 7719–7726.

  38. 38.

    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D. et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem., 1983, 4(2): 187–217.

  39. 39.

    Raves, M. L., Harel, M., Pang, Y. P. et al., Structure of acetylcho-linesterase complexed with the nootropic alkaloid, (-)-huperzine A, Nat. Struct. Biol., 1997, 7(1): 57–63.

  40. 40.

    Xu, Y. C., Shen, J. H., Luo, X. M. et al., How does Huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations, J. Am. Chem. Soc., 2003, 125(37): 11340–11349.

  41. 41.

    De Clercq, E., Non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of human immunodeficiency virus type 1 (HIV-1) infections:strategies to overcome drug resistance development, Med. Res. Rev., 1996, 16(2): 125–157.

  42. 42.

    Campiani, G., Ramunno, A., Maga, G. et al., Non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors: past, present, and future perspectives, Curr. Pharm. Des., 2002, 8(8): 615–657.

  43. 43.

    De Clercq, E., The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the thereapy of HIV-1 infection, Antiviral Res., 1998, 38(3): 153–179.

  44. 44.

    De Clercq, E., Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, Farmaco, 1999, 54(1-2): 26–45.

  45. 45.

    De Clercq, E., New developments in anti-HIV chemotherapy, Curr. Pharm. Des., 2001, 8(13): 1543–1572.

  46. 46.

    De Clercq, E., Strategies in the design of antiviral drugs, Nat. Rev. Drug Discov., 2002, 1(1): 13–25.

  47. 47.

    Buckheit, R. W., Non-nucleoside reverse transcriptase inhibitors: perspectives on novel therapeutic compounds and strategies for the treatment of HIV infection, Expert. Opin. Investig. Drugs, 2001, 10(8): 1423–1442.

  48. 48.

    Gupta, S. P., Advances in QSAR studies of HIV-1 reverse transcriptase inhibitors, Prog. Drug Res., 2002, 58: 223–264.

  49. 49.

    Heymann, B., Grubmuller, H., Molecular dynamics force probe simulations of antibody/antigen unbinding: entropic control and nonadditivity of unbinding forces, Biophys. J., 2001, 81(3): 1295–1313.

  50. 50.

    Wriggers, W., Schulten, K., Stability and dynamics of G-actin: Back door water diffusion and behavior of a subdomain 3/4 loop, Biophys. J., 1997, 73(2): 624–639.

  51. 51.

    Wriggers, W., Schulten, K., Investigating a back door mechanism of actin phosphate release by steered molecular dynamics, Proteins: Struct. Func. Gen., 1999, 35(2): 262–273.

  52. 52.

    Marszalek, P. E., Lu, H., Li, H. et al., Mechanical unfolding intermediates in titin modules, Nature, 1999, 402(6757): 100–103.

  53. 53.

    Lu, H., Schulten, K., Steered molecular dynamics simulations of force-induced protein domain unfolding, Proteins: Struct. Func. Gen., 1999, 35(4): 453–463.

  54. 54.

    Lu, H., Schulten, K., Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observations, Chem. Phys., 1999, 247(1): 141–153.

  55. 55.

    Gao, M., Lu, H., Schulten, K., Simulated refolding of stretched titin immunoglobulin domains, Biophys. J., 2001, 81(4): 2268–2277.

  56. 56.

    Gao, M., Wilmanns, M., Schulten, K., Steered molecular dynamics studies of titin I1 domain unfolding, Biophys. J., 2002, 83(6): 3435–3445.

  57. 57.

    Izrailev, S., Crofts, A. R., Berry, E. A. et al., Steered molecular dynamics simulation of the Rieske subunit motion in the cyto-chrome bc1 complex, Biophys. J., 1999,77(4): 1753–1768.

  58. 58.

    Bockmann, R. A., Grubmuller, H., Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase, Nat. Struct. Biol., 2002, 9(3): 198–202.

  59. 59.

    Grayson, P., Tajkhorshid, E., Schulten, K., Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics, Biophys. J., 2003, 85(1): 36–48.

  60. 60.

    Klimov, D. K., Thirumalai, D., Stretching single-domain proteins: phase diagram and kinetics of force-induced unfolding, Proc. Natl. Acad. Sci. U.S.A., 1999, 96(11): 6166–6170.

  61. 61.

    Klimov, D. K., Thirumalai, D., Native topology determines force-induced unfolding pathways in globular proteins, Proc. Natl. Acad. Sci. U.S.A., 2000, 97(13): 7254–7259.

  62. 62.

    Evans, E., Ritchie, K., Dynamic strength of molecular adhesion bonds, Biophys. J., 1997, 72(4): 1541–1555.

  63. 63.

    Evans, E., Ritchie, K., Strength of a weak bond connecting flexible polymer chains, Biophys. J., 1999, 76(5): 2439–2447.

Download references

Author information

Correspondence to Yechun Xu or Jianhua Shen or Xiaomin Luo or Xu Shen or Kaixian Chen or Hualiang Jiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, Y., Shen, J., Luo, X. et al. Steered molecular dynamics simulations of protein-ligand interactions. Sc. China Ser. B-Chem. 47, 355 (2004).

Download citation


  • molecular dynamics simulation
  • steered molecular dynamics simulation
  • atomic force microscope
  • avidin
  • biotin
  • huperzine A
  • acetylcholinesterase
  • HIV-1 reverse transcriptas
  • non-nucleoside RT inhibitor.