Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos

Abstract

The first successful freezing of early embryos to −196°C in 1972 required that they be cooled slowly at ∼1°C/min to about −70°C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to −70°C, the result is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/ chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Mazur, P. (1977),Cryobiology 14, 251–272.

  2. 2.

    Mazur, P. (1966),Cryobiology, Meryman, H. T., ed., Academic, London, pp. 213–315.

  3. 3.

    Mazur, P. (1963),J. Gen. Physiol. 47, 347–369.

  4. 4.

    Mazur, P., Rall, W. F. and Leibo, S. P. (1984),Cell Biophys. 6, 197–213.

  5. 5.

    Scheiwe, M. W. and Körber, C. (1983),Cryobiology 20, 257–273.

  6. 6.

    Armitage, W. J. (1986),J. Physiol. 374, 375–385.

  7. 7.

    Shabana, M. and McGrath, J. J. (1988),Cryobiology 25, 338–354.

  8. 8.

    Rule, G. S., Law, P., Kruuv, J. and Lepock, J. R. (1980),J. Cell. Physiol. 103, 407–416.

  9. 9.

    Hempling, H. G. and White, S. (1984),Cryobiology 21, 133–143.

  10. 10.

    Papanek, T. H. (1978), PhD Thesis, MIT.

  11. 11.

    Leibo, S. P. (1980),J. Membr. Biol. 53, 179–188.

  12. 12.

    Aggarwal, S. J., Diller, K. R. and Baxter, C. R. (1988),Cryobiology 25, 203–211.

  13. 13.

    Scatchard, G., Hamer, W. J. and Wood, S. E. (1938),J. Amer. Chem. Soc. 60, 3061–3070.

  14. 14.

    Abramczuk, J. and Sawicki, W. (1974),J. Exp. Zool. 188, 25–34.

  15. 15.

    Rall, W. F., Mazur, P. and McGrath, J. J. (1983),Biophys. J. 41, 1–12.

  16. 16.

    Leibo, S. P., McGrath, J. J. and Cravalho, E. G. (1978),Cryobiology 15, 257–271.

  17. 17.

    Leibo, S. P. (1986),Genetic Engineering of Animals. An Agricultural Prospective. Evans, J. W. and Hollaender, A., eds., Plenum, New York, pp. 251–272.

  18. 18.

    Mazur, P. and Schneider, U. (1986),Cell Biophys. 8, 259–284.

  19. 19.

    Ostashko, F. I., Bezugly, N. D., and Pevedera, K. B. (1984),10th International Congress on Animal Reproduction and Artificial Insemination, June 1984, University of Illinois, p. 210.

  20. 20.

    Leibo, S. P. (1977),Cryoimmunologie. Simatos, D., Strong, D.M., and Turc, J.-M., eds., INSERM, Paris, pp. 311–334.

  21. 21.

    Pitt, R. E. and Steponkus, P. L. (1989),Cryobiology 26, 44–63.

  22. 22.

    Mazur, P. (1984),Am. J. Physiol. 247, C125-C142.

  23. 23.

    Whittingham, D. G., Leibo, S. P. and Mazur, P. (1972),Science 178, 411–414.

  24. 24.

    Wilmut, I. (1972),Life Sci. 11, 1071–1079.

  25. 25.

    Leibo, S. P., Mazur, P. and Jackowski, S. C. (1974),Exp. Cell Res. 89, 79–88.

  26. 26.

    Whittingham, D. G., Wood, M., Farrant, J., Lee, H. and Halsey, J. A. (1979),J. Reprod. Fertil. 56, 11–21.

  27. 27.

    Miyamoto, H. and Ishibashi, T. (1983),J. Exp. Zool. 226, 123–127.

  28. 28.

    Rall, W. F. and Polge, C. (1984),J. Reprod. Fertil. 70, 285–292.

  29. 29.

    Bank, H. (1973),Cryobiology 10, 157–170.

  30. 30.

    Rall, W. F. (1981),Frozen Storage of Laboratory Animals, Zeilmaker, G. H., ed., Gustav Fischer Verlag, Stuttgart, pp. 33–44.

  31. 31.

    Rall, W. F., Reid, D. S. and Polge, C. (1984),Cryobiology 21, 106–121.

  32. 32.

    Fahy, G. M. (1987),The Biophysics of Organ Cryopreservation, Pegg, D. E. and Karow, A. M. Jr., eds., Plenum, New York, pp. 265–297.

  33. 33.

    Leibo, S. P. and Mazur, P. (1978),Methods in Mammalian Reproduction, Daniel, J. C. Jr., ed., Academic, New York. pp. 179–201.

  34. 34.

    Takeda, T., Elsden, R. P. and Seidel, G. E., Jr. (1984),Theriogenology 21, 266.

  35. 35.

    Williams, T. J. and Johnson, S. E. (1986),Theriogenology 26, 125–133.

  36. 36.

    Széll, A. and Shelton, J. N. (1986),J. Reprod. Fertil. 76, 401–408.

  37. 37.

    Daniels, F., Mathews, J. H., Williams, J. W., Bender, P. and Alberty, R. A. (1956),Experimental Physical Chemistry, 5th ed., McGraw Hill, New York, p. 90.

  38. 38.

    Mazur, P., Leibo, S. P. and Miller, R. H. (1974),J. Membr. Biol. 15, 107–136.

  39. 39.

    Mazur, P., Rigopoulos, N., Jackowski, S. C. and Leibo, S. P. (1976),Biophys. J. 16, 232a.

  40. 40.

    Jackowski, S., Leibo, S. P. and Mazur, P. (1980),J. Exp. Zool. 212, 329–341.

  41. 41.

    Stein, W. D. (1967),The Movement of Molecules Across Cell Membranes, Academic, New York, p. 48.

  42. 42.

    Kedem, O. and Katchalsky, A. (1958),Biochim. Biophys. Acta 27, 229–246.

  43. 43.

    Rall, W. F. (1987),Cryobiology 24, 387–402.

  44. 44.

    Rall, W. F. and Fahy, G. M. (1985),Nature 313, 573–575.

  45. 45.

    Shimada, K. (1977),Contrib. Inst. Low Temp. Sci. Ser.B 19, 49–69.

  46. 46.

    Széll, A. and Shelton, J. N. (1986),J. Reprod. Fertil. 78, 699–703.

  47. 47.

    Trounson, A., Peura, A., Freemann, L. and Kirby, C. (1988),Fertil. Steril. 49, 822–826.

  48. 48.

    Miyamoto, H. and Ishibashi, T. (1986),J. Reprod. Fertil. 78, 471–478.

  49. 49.

    Kasai, M., Niwa, K. and Iritani, A. (1981),J. Reprod. Fertil. 63, 175–180.

  50. 50.

    Wood, M. J. and Farrant, J. (1980),Cryobiology 17, 178–180.

  51. 51.

    Kasai, M., Niwa, K. and Iritani, A. (1980),J. Reprod. Fertil. 59, 51–56.

  52. 52.

    Renard, J.-P., Nguyen, Bui-Xuan and Garnier, V. (1984),J. Reprod. Fertil. 71, 573–580.

  53. 53.

    Canham, P. B. (1970),J. Cell. Physiol. 74, 203–212.

  54. 54.

    Evans, E. A. and Parsegian, V. A. (1983),Annals NY Acad. Sci. 416, 13–33.

  55. 55.

    Jackowski, S. and Dumont, J. N. (1979),Biol. Reprod. 20, 150–161.

  56. 56.

    Steponkus, P. L. and Wiest, S. C. (1979),The Role of the Membrane, Lyons, J. M., Graham, D. and Raison, J. K., eds., Academic, New York, pp. 231–254.

  57. 57.

    Essner, E., Lin, W.-L. and Gordon, S. (1986),Cell Tissue Res. 245, 431–437.

  58. 58.

    Armitage, W. J. and Mazur, P. (1984),Amer. J. Physiol. 247 (Cell Physiol. 16):C373-C381.

  59. 59.

    Lehtonen, E. (1980),J. Embryol. Exp. Morphol. 58, 231–249.

  60. 60.

    Myers, S. P., Lin, T.-T., Pitt, R. E. and Steponkus, P. L. (1987),Cryo. Lett. 8, 260–275.

  61. 61.

    Lehn-Jensen, H. and Rall, W. F. (1983),Theriogenology 19, 263–277.

  62. 62.

    Leibo, S. P., Dowgert, M. F. and Steponkus, P. L. (1984),Cryobiology 21, 711.

  63. 63.

    Rassmussen, D. H. and MacKenzie, A. P. (1972),Water Structure at the Water-Polymer Interface, Jellinek, H. H. G., ed., Plenum, New York, pp. 126–145.

  64. 64.

    Luyet, B. J. (1966),Cryobiology., Meryman, H. T., ed., Academic, London, pp. 115–138.

  65. 65.

    Fahy, G. M., MacFarlane, D. R., Angell, C. A. and Meryman, H. T. (1984),Cryobiology 21, 407–426.

Download references

Author information

Correspondence to Peter Mazur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazur, P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophysics 17, 53–92 (1990). https://doi.org/10.1007/BF02989804

Download citation

Index Entries

  • Freezing, embryos—mouse, bovine
  • ice formation
  • vitrification
  • survival
  • cryoprotectants