Cell Biophysics

, Volume 15, Issue 3, pp 159–171 | Cite as

Use of biocarrier beads and flow cytometry for single-cell studies of fibronectin gene regulation in dibutyrl cyclic AMP reverse transformed CHO-K1 cells

  • Jacqueline M. Sterner
  • James F. Leary


The protease sensitivity of a number of cell surface or cytoskeletal components and the relationship of these to the substratum in attached cells has prevented the quantitative measurement of their expression by flow cytometry. Using traditional cell sorting techniques, cells must be treated with a protease to detach them from a substrate in order to produce a single-cell suspension.

Unfortunately, proteolytic treatment alters or destroys a number of cellular proteins. Fibronectin either on the cell surface or as part of the substratum laid down by the cell is particularly sensitive to proteases, preventing its quantitative study by flow cytometry. To circumvent these problems and produce a single cell suspension necessary for flow cytometric analysis, CHO-K1, a Chinese hamster ovary cell line, were grown in suspension on specially-treated 25 μm biocarrier beads. The CHO-K1 cell line is composed of transformed epithelial-like cells that have lost the fibronectin deposit around their cell membranes. To restore the typical fibroblastic deposit of fibronectin, the cells attached to beads were induced by dibutyrl cAMP to undergo a reverse transformation reaction to restore fibroblastic morphology and the typical fibroblastic deposite of fibronectin on the cell surface and substratum. The cells attached to beads were then immunofluorescently labeled for the protease-sensitive, extracellular matrix component, fibronectin, and examined on a flow cytometer. Cell surface fibronectin heterogeneity was then examined on a cell-by-cell basis as a function of cell cycle using Hoechst 33342 dye that binds to AT base pairs of cellular DNA. Dual laser measurement and multiparameter list mode data analysis were used to study the relationship between cell surface fibronectin of biocarrier bead attached cells and cell cycle.

Index Entries

Flow cytometry fibronectin biocarrier bead protease-sensitive extracellular matrix gene regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grinnel, F., Feld, M., and Minter, D. (1980),Cell 19, 517.CrossRefGoogle Scholar
  2. 2.
    Grinnel, F. and Feld, M. K. (1979),Cell 17, 117.CrossRefGoogle Scholar
  3. 3.
    Zetter, B. R., Johnson, L. K., Shuman, M. A., and Gospodarowicz, D. (1978),Cell 14, 501.PubMedCrossRefGoogle Scholar
  4. 4.
    Ginsberg, M. H., Painter, R. G., Forsyth, J., Birdwell, C. and Plow, E. F. (1980),Proc. Nat. Acad. Sci. USA 77, 1049.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamada, K. M., Yamada, S. S., and Pastan, I. (1976),Proc. Nat. Acad. Sci. USA 73, 1217.PubMedCrossRefGoogle Scholar
  6. 6.
    Ali, I. U., Mautner, V. M., Lanza, R. P., and Hynes, R. O. (1977),Cell 11, 115.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, L. B., Summerhayes, L, Hsieh, P., and Gallimore, P. H. (1980),Tumor Cell Surfaces and Malignancy, Hynes, R. and Fox, C. F., eds., New York, NY, pp. 505–516.Google Scholar
  8. 8.
    Saba, T. M., Blumenstock, F. A., Weber, P., and Kaplan, J. E. (1978),Ann. NY Acad. Sci. 312, 43.PubMedCrossRefGoogle Scholar
  9. 9.
    Blumenstock, F. A., Saba, T. M., Weber, P., and Laffin, R.(1978),J. Biol Chem. 253, 4287.PubMedGoogle Scholar
  10. 10.
    Hynes, R. O. (1976),Biochim. Biophys. Acta 458, 73.PubMedGoogle Scholar
  11. 11.
    Wartiovaara, J., Leivo, L., and Vaheri, A. (1979),Dev. Biol 69, 247.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, L. B. (1977),Cell 10, 393.PubMedCrossRefGoogle Scholar
  13. 13.
    Dressau, W., Sasse, J., and von der Mark, K. (1978),Ann. NY Acad. Sci. 312, 404.CrossRefGoogle Scholar
  14. 14.
    Thesleff, I., Stenman, S., Vaheri, A., and Timpl, R. (1979),Dev. Biol 70, 116.PubMedCrossRefGoogle Scholar
  15. 15.
    Nielson, S. E. and Puck, T. T. (1979),Proc. Nat. Acad. Sci. USA 77, 985.CrossRefGoogle Scholar
  16. 16.
    Ashall, F. and Puck, T. T. (1981),Proc. Nat. Acad. Sci USA 229, 5145.Google Scholar
  17. 17.
    Van Wezel, A. L. (1976),Dev. Biol 37, 143.Google Scholar
  18. 18.
    Bloch, D. B., Ault, K. A., and Smith, B. R. (1983),Cytometry 3, 449.PubMedCrossRefGoogle Scholar
  19. 19.
    Dennis, P. A., Wolley, R., Taylor, N. S., and Moyer, C. F. (1986),Cytometry 7, 384.PubMedCrossRefGoogle Scholar
  20. 20.
    Aggeler, J., Kapp, L. N., Tseng, S. G. G., and Werb, Z. (1982),Exp. Cell Res. 139, 275.PubMedCrossRefGoogle Scholar
  21. 21.
    Senger, D.R., Destree, A. T., and Hynes, R. O. (1983),Am. J. Physiol. 255, andCell Physiol 14, C144).Google Scholar
  22. 22.
    Leary, J. F., Todd, P., Wood, J. C. S., and Jett, J. H. (1979),J. Histochem. Cytochem. 27, 315.PubMedGoogle Scholar
  23. 23.
    Fried, J. (1976),Comput. Biomed. Res. 9, 263.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Jacqueline M. Sterner
    • 1
  • James F. Leary
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Rochester School Medical CenterRochester

Personalised recommendations