Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hepatic zinc, copper, and iron in the developing turkey embryo and newly hatched poult

  • 32 Accesses

  • 6 Citations

Abstract

The ontogeny of hepatic tissue growth and trace metal deposition was examined in the developing turkey embryo and newly hatched poult. Hepatic concentrations of zinc and iron in the embryo declined by about twofold between day 16 of incubation and hatching. Hepatic copper concentration increased approximately fourfold by day 23 of incubation and then declined rapidly through hatching. During the post-hatching period, hepatic zinc concentration increased twofold by day 10, whereas a small increase in hepatic iron concentration occurred just prior to hatching and continued through the third day post-hatching. A significant positive correlation existed between hepatic zinc and iron concentrations in the developing embryo. The concentrations of both these metals were inversely correlated with hepatic copper concentration during the same time. Total hepatic zinc and iron content increased throughout the entire time studied, whereas total copper content increased up to hatching and then declined during the first week post-hatching. The most rapid phase of hepatic metal accretion differed for each metal, with zinc being rapidly accumulated during the post-hatching period, copper during the last half of incubation and iron at about the time of hatching and the first few days post-hatching. Each of these metals demonstrated a specific relationship to hepatic tissue growth that changed between the embryonic and neonatal periods of development.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. E. Savage,Fed. Proc. 27, 927 (1968).

  2. 2.

    W. C. Supplee, D. L. Blamberg, O. D. Keene, G. F. Combs, and G. L. Romoser,Foult. Sa. 37, 1245 (1958).

  3. 3.

    D. E. Turk, M. L. Sunde, and W. G, Hoekstra,Foult, Sci. 38, 1256 (1959).

  4. 4.

    D. L. Blamberg, U. B. Blackwood, W, C. Supplee, and G. F. Combs,Proc. Soc. Exp. Biol. Med. 104, 217 (1960).

  5. 5.

    E. W. Kienholz, D. E. Turk, M. L. Sunde, and W. G. Hoekstra,J. Nutr. 75, 211 (1961).

  6. 6.

    D. W. Bird, B. L. O’Dell, and J. E. Savage,Foult Sci. 42, 1256 (1963).

  7. 7.

    C. F. Simpson, J. E. Jones, and R, H. Harms,J. Nutr. 91, 283 (1967).

  8. 8.

    W. A. Dewar, P. W. Teague, and J. N. Downie,Br Foult. Sci. 15, 119 (1974).

  9. 9.

    W. D. McFarlane and H. I. Milne,J. Biol. Chem. 107, 309 (1934).

  10. 10.

    B. C. Sandrock, S. R. Kern, and S. E. Bryan,Biol. Trace Element Res. 5, 503 (1983).

  11. 11.

    W. W. Saylor and J. V. Downer,Poult. Sci. 61, 1538 (1982).

  12. 12.

    E. M. Widdowson, J. Dauncey, and J, C. L. Shaw,Froc. Nutr. Soc. 33, 275 (1974).

  13. 13.

    I. Bremner, R. B. Williams, and B. W. Young,Br. J. Nutr. 38, 87 (1977).

  14. 14.

    M. Hidiroglou,Can. Vet. J. 21, 328 (1980).

  15. 15.

    L. S. Hurley, C. L. Keen, and B. Lonnerdal, inBiological Roles of Copper, Ciba Foundation, Excerpta Medica, Amsterdam, 1980, pp. 227–245.

  16. 16.

    C. L. Keen and L. S. Hurley,Mech Ag. Dev. 13, 161 (1980).

  17. 17.

    L. S. Hurley,The Johns Hopkins Med. J. 148, 1 (1981).

  18. 18.

    L. S. Hurley, C. L. Keen, and B. Lonnerdal,Fed. Proc. 42, 1735 (1983).

  19. 19.

    W. C. Buhi, C. A. Ducsay, F. F. Bartol, F. W. Bazer, and R. M. Roberts,Placenta 4, 455 (1983).

  20. 20.

    SAS Institute Inc., inSAS Users Guide: Statistics, 1982 Edition, SAS Institute Inc., Carey, NC, 1982,

  21. 21.

    G.K. Davis, inMicronutrient Interactions: Vitamins, Minerals and Hazardous El- ements, Ann. N.Y. Acad. Sci., vol. 355, O. A. Levander and L. Cheng, eds., NY Academy of Science, NY, 1980, pp. 130–137.

  22. 22.

    B. M. Freeman and M. A. Vince,Development of the Avian Embryo, Wiley, NY, 1974.

  23. 23.

    I. Kimura,Develop. Growth Diff. 25, 531 (1983).

  24. 24.

    M. P. Richards,Poult. Sci. 61, 2089 (1982).

  25. 25.

    G. W. Evans,World Rev. Nutr. Diet. 17, 225 (1973).

  26. 26.

    T. Terao and C A. Owen Jr.,Am J. Physiol. 232, E 172 (1977).

  27. 27.

    R. Mason, A. Bakka, G. P. Samarawickrama, and M. Webb,Br. J. Nutr. 45, 375 (1980).

  28. 28.

    H. Porter,Biochem. Biophys. Res. Commun. 56, 61 (1974).

  29. 29.

    L. Ryden and H. F. Deutsch,J. Biol. Chem. 253, 519 (1978).

  30. 30.

    H. Rupp and U. Weser,FEBS Lett. 44, 293 (1974).

  31. 32.

    M. P. Richards,Poult. Sci. 60, 1718 (1981).

  32. 32.

    M. P. Richards, R. W. Rosebrough, and N. C. Steele,Comp. Biochem. PhysioL 78A, 525 (1984).

  33. 33.

    S. K. S. Srai, A. K. Burroughs, B. Wood, T. L. Dormandy, and O. Epstein,Biochem Soc. Trans. 11, 718 (1983).

  34. 34.

    M. Webb, D. Dinsdale, and D. Holt, in Proceedings of the Fifth International Symposium on Trace Element Metabolism in Animals and Humans, C. F. Mills, ed., 1985, p. 71, 5, 1984, p. 71.

  35. 35.

    M. P. Richards, unpublished observations.

  36. 36.

    R. Tupper, R. W. E. Watts, and A. Wormall,Biochem. J. 57, 245 (1954).

  37. 37.

    G. Schmidt, M. J. Bessman, M. D. Hickey, and S. J. Thannhauser,J. Biol. Chem. 223, 1027 (1956).

  38. 38.

    O. Greengard, A. Sentenac, and N. Mendelsohn,Biochem. Biophys. Acta. 90, 406 (1964).

  39. 39.

    W. D. McFarlane,Biochem. J. 25, 1061 (1932).

  40. 40.

    C. R. Grau, T. E. Roudybush, and W. H. McGibbon,Poult. Sci. 58, 1143 (1979).

  41. 42.

    R. W. Burley and W. H. Cook,Can, J. Biochem. Physiol. 39, 1295 (1961).

  42. 42.

    Z. Saito, G. Martin, and W. H. Cook,Can. J. Biochem. 43, 1755 (1965).

  43. 43.

    J. Williams,Biochem J. 183, 346 (1962).

  44. 44.

    Z. Saito and W. G. Martin,Can. J. Biochem. 44, 293 (1966).

Download references

Author information

Correspondence to Mark P. Richards or Bernard T. Weinland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richards, M.P., Weinland, B.T. Hepatic zinc, copper, and iron in the developing turkey embryo and newly hatched poult. Biol Trace Elem Res 7, 269 (1985). https://doi.org/10.1007/BF02989252

Download citation

Index Entries

  • Hepatic metals
  • trace metals, in avian embryonic and neonatal development
  • trace metal accretion, in developing liver
  • in turkey embryo and poult liver
  • metabolism, of trace elements during avian development
  • avian embryonic and neonatal development
  • copper, in turkey embryo and poult liver
  • iron, in turkey embryo and poult liver
  • turkey embryo, Zn, Cu, and Fe in
  • poult liver, Zn, Cu, and Fe in