Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the lerch zeta-function

  • 47 Accesses

  • 7 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Andersson, Mean value properties of the Hurwitz zeta-function,Math. Scand.,71, 295–300 (1992).

  2. 2.

    A. A. Karatsuba,Principles of the Analytic Number Theory [in Russian], Nauka, Moscow (1975).

  3. 3.

    M. Katsurada, An application of Mellin-Barnes’ type integrals to the mean square of Lerch zeta-functions, Preprint (1995).

  4. 4.

    M. Katsurada and K. Matsumoto, Discrede mean values of Hurwitz zeta-function,Proc. Japan Acad., Ser. A,69, 164–169 (1993).

  5. 5.

    M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions,Proc. Japan Acad., Ser. A,69, 303–307 (1993).

  6. 6.

    M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions. I,Math. Scand. (to appear).

  7. 7.

    D. Klusch, Asymptotic equalities for the Lipschitz-Lerch zeta-function,Arch. Math. (Basel),49, 38–43 (1987).

  8. 8.

    D. Klusch, A hybrid version of a theorem of Atkinson,Rev. Roumaine Math. Pures Appi,34, 721–728 (1989).

  9. 9.

    A. Laurinčikas, The distribution of values of complex-valued functions,Liet. Matem. Rink.,15(2), 123–134 (1975).

  10. 10.

    A. Laurinčikas, Limit theorems for a product of the Hurwitz zeta-functions,Lith. Math. J.,34(2), 160–170 (1994).

  11. 11.

    A. Laurinčikas,Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht-Boston-London (1996).

  12. 12.

    M. Lerch, Note sur la fonctionK(w, x, s) = ⌆n≧0 exp{2πinx}(n +w)-s,Acta Math.,11, 19–24 (1887).

  13. 13.

    R. Lipschitz, Untersuchung einer aus vier Elementen gebildeten Reihe,J. Reine Angew. Math.,105, 127–156 (1889).

  14. 14.

    W. Zhang, On the Hurwitz zeta-function,Illinois J. Math.,35, 569–576 (1991).

  15. 15.

    W. Zhang, On the mean square value formula of Lerch zeta-function,Adv. Math. (China),22, 367–369 (1993).

  16. 16.

    W. Zhang, On the mean square value formula of the Hurwitz zeta-function,Illinois J. Math.,38, 71–78 (1994).

Download references

Author information

Correspondence to R. Garunkštis.

Additional information

Translated from Lietuvos Matematikos Rinkinys, Vol. 36, No. 4, pp. 423–434, October–December, 1996.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garunkštis, R., Laurinčikas, A. On the lerch zeta-function. Lith Math J 36, 337 (1996). https://doi.org/10.1007/BF02986858

Download citation

Keywords

  • Probability Measure
  • Asymptotic Expansion
  • Limit Theorem
  • Finite Interval
  • Analytic Number Theory