Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of propagule type and growing environment on antioxidant activity and total phenolic content in potato germplasm


Wild potato species are maintained primarily as botanical seed populations, so tuber trait studies require conversion of germplasm to tuber form. Such tubers may be obtained from seedlings produced directly from botanical seed or from plants grown from tuber propagules (tuberlings). Since most wild species require short days for tuberization, it is not possible to generate field tubers of these species in most USA locations. Historically, tubers for research evaluations have been generated in the artificial conditions of the winter greenhouse. Since the potato crop is normally grown from tubers produced from tuberlings grown in the field, it is important to know how much results differ when evaluating tubers that were produced from seedlings grown in the greenhouse. We compared antioxidant activity and phenolic content of tubers generated in the greenhouse at Sturgeon Bay, WI, from seedlings, and tubers generated from both seedlings and tuberlings in the field at the Kula Experiment Station, Kula, Maui, HI. A ‘mini-core’ set of 75 PIs representing 25 wild and primitive cultivated species was used. Differences in means of propagule types and growing environments were significant but not large. Average amount of antioxidant activity and phenolic content of tubers from field-grown seedlings was higher than that of tubers from tuberlings. These values were also higher in field-grown tubers than in greenhouse-grown tubers. Relative performance was similar regardless of environment or propagule type, with some important exceptions. Tubers of Solarium pinnatisectum and Solanum jamesii were high regardless of treatment. In contrast, tubers of certain Solanum microdontum, canasense, stenotomum and commersonii (species much more amenable to breeding) exhibited high antioxidant levels when produced in the field from tuberlings, but not when produced from greenhouse-grown seedlings. Thus, some germplasm may not exhibit useful antioxidant potential when tubers are produced in artificial greenhouse conditions.


Las especies de papa silvestre se mantienen principalmente como poblaciones de semilla botánica, de tal manera que los estudios de las características requieren la conversión del germoplasma a la forma de tubérculo. Dichos tubérculos se pueden obtener directamente de semilla botánica o de plantas provenientes de tuberculillos. Desde que la mayoría de especies silvestres requieren de días cortos para tuberizar, no es posible generar tubérculos de estas especies en la mayoría de lugares de EUA. Históricamente, los tubérculos para evaluaciones de investigación se han generado en condiciones artificiales de invernadero de invierno. Dado que el cultivo proviene de tubérculos producidos de tuberculillos crecidos en el campo, es importante saber cuanto difieren los resultados cuando se evalúan tubérculos producidos de plántulas crecidas en el invernadero. Hemos comparado la actividad antioxidante y el contenido fenólico de los tubérculos generados en el invernadero de Sturgeon Bay, WI, de plántulas y tuberculillos generados de plántulas y tuberculillos en el campo de la Estación Experimental Kula, Kula, Maui, HI. Se usó un conjunto ′mini-core′ de 75 PIs que representan 25 especies silvestres y cultivadas primitivas. Las diferencias en el promedio de tipos de propágulos y ambientes de crecimiento fueron significativas pero no amplias. La cantidad promedio de actividad antioxidante y contenido fenólico de las plántulas crecidas en el campo fue más alta que la de tubérculos provenientes de tuberculillos. El contenido de los tubérculos crecidos en el campo fue también más alto que el de los tubérculos formados en el invernadero. El comportamiento relativo fue similar sin tomar en cuenta el tipo de ambiente o de propágulos con algunas excepciones importantes. Los tubérculos de Solarium pinnatisectum y Solanum jamesii fueron altos sin tomar en cuenta el tratamiento. Al contrario, los tubérculos de ciertos Solanum macrodontum, canasense, stenotomium y commersoni (especies más dóciles al mejoramiento), exhibieron altos niveles de antioxidante cuando provinieron de tuberculillos pero no cuando se produjeron de plántulas crecidas en el invernadero. Así, algún germoplasma puede no exhibir su potencial antioxidante cuando los tubérculos son producidos es condiciones artificiales de invernadero.

This is a preview of subscription content, log in to check access.



Plant introduction a population unit of germplasm


Antioxidant activity measured as ug µf trolox equivalents per gram tuber fresh weight


Phenolic content measured as ug chlorogenic acid equivalents per gram tuber fresh weight


tubers generated from Hawaii field seedlings


tubers generated from Hawaii field tuberlings


tubers generated from Wisconsin greenhouse seedlings

Literature Cited

  1. Aviram M. 2002. Red wine and white wine flavonoid antioxidants against LDL oxidation and cardiovascular disease. Free Radical Res 36:73–75.

  2. Bamberg JB. 1995. Screening potato (Solanum) species for male fertility under heat stress. Am Potato J 72:23–33.

  3. Brand-Williams W, ME Cuvelier and C Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30.

  4. Chu YF, J Sun, X Wu and RH Liu. 2002. Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50:6910- 6916.

  5. Eberhardt MV, CY Lee and RH Lui. 2000. Antioxidant activity of fresh apples. Nature 405:903–904.

  6. Friedman M, KR Lee, HJ Kim, IS Lee and N Kozukue. 2005. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53:6162–6169.

  7. Gil MI, FA Tomas-Barberan, B Hess-Pierce, DM Holcroft and AA Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agrie Food Chem. 48:4581–4589.

  8. Hale AL. 2003. Screening potato genotypes for antioxidant activity, identification of the responsible compounds and differentiating Russet Norkotah strains using AFLP and microsatellite marker analysis. PhD dissertation, Texas A&M University, College Station, TX.

  9. Jayaprakasam B, M Vanisree, Y Zhang, DL Dewitt and MG Nair. 2006. Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J Agrie Food Chem 54:5375–5381.

  10. Kampa M, VI Alexaki, G Notas, AP Nifli, A Nistikaki, A Hatzoglou, E Bakogeorgou, E Kouimtzoglou, G Blekas, D Boskou, A Gravanis and E Castanas. 2004. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res 6:R63–74.

  11. Klein BP and AC Kurilich. 2000. Processing effects on dietary antioxidants from plant foods. HortScience 35:580–584.

  12. Liebman B. 2005. Antioxidants: Still hazy after all these years. NAH 32:2–5.

  13. Lui M, XQ Li, C Weber, CY Lee, J Brown and RH Lui. 2002. Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50:2926–2930.

  14. Michels KB, E Giovannucci, KJ Joshipura, BA Rosner, MJ Stampfer, CS Fuchs, GA Colditz, FE Speizer and WC Willett. 2000. Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers. J Natl Cancer Inst 92:1740–1752.

  15. Murakami A, Y Nakamura, K Koshimizu, D Takahashi, K Matsumoto, K Hagihara, H Taniguchi, E Nomura, A Hosoda, T Tsuno, Y Maruta, HW Kim, K Kawabata and H Ohigashi. 2002. FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: Comparison with ferulic acid. Cancer Lett 180:121–129.

  16. Reyes LF, JC Miller Jr. and L Cisneros-Zevallos. 2005. Antioxidant capacity, anthocyanins and total phenolics in purple- and red-fleshed potato (Solanum tuberosum L.) genotypes. Amer J Potato Res 82:271–277.

  17. SAS. 2002. SAS software version 9.0. SAS Institute, Inc., Cary, NC.

  18. Singleton VL, R Orthofer and RM Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152- 178.

  19. Yang SA, SH Paek, N Kozukue, KR Lee and JA Kim. 2006. Alpha-chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation. Food Chem Toxicol 44:839–846.

Download references

Author information

Correspondence to M. Ndambe Nzaramba or John B. Bamberg or J. Creighton Miller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nzaramba, M.N., Bamberg, J.B. & Miller, J.C. Effect of propagule type and growing environment on antioxidant activity and total phenolic content in potato germplasm. Amer J of Potato Res 84, 323 (2007).

Download citation


  • Antioxidant Activity
  • Phenolic Content
  • Total Phenolic Content
  • Potato Research
  • Tuber Fresh Weight