Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Integers and polynomials: comparing the close cousins Z and F q [x]

  • 208 Accesses

  • 11 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. M. Adleman and M.-D.A. Huang, Primality Testing and Abelian Varieties over Finite Fields, Lect. Notes in Math., Vol. 1512, Springer-Verlag, 1992.

  2. [2]

    M. Agrawal, N. Kayal, and N. Saxena,PRIMES is in P, Annals of Mathematics160 (2004),s 781–798.

  3. [3]

    Z. I. Borevich and I. R. Shafarevich,Number Theory, New York, Academic Press, 1966.

  4. [4]

    V. Brun,La serie 1/5 + 1/7 + 1/11 +. . .oú les dénominateurs sont “nombres premiers jumeaux“ est convergente ou finie, Bull. Sci. Math.43 (1919), 100–104 and 124–128.

  5. [5]

    J. R. Chen,On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II, Acta Math. Sci. Sinica16 (1973), 157–176; and 21 (1978), 421–430.

  6. [6]

    J. R. Chen and Y. Wang,On the Odd Goldbach Problem, Acta Math. Sci. Sinica32 (1989), 702–718.

  7. [7]

    R. Crandall and C. Pomerance,Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2001.

  8. [8]

    J.-M. Deshouillers, G. Effinger, H. nte Riele, and D. Zinoviev,A Complete Vinogradov 3-Primes Theorem under the Riemann Hypothesis, Electronic Research Announcements of the AMS,3 (1997), 99–104.

  9. [9]

    G. Effinger,A Goldbach Theorem for Polynomials of Low Degree over Odd Finite Fields, Acta Arithmetica,42 (1983), 329–365.

  10. [10]

    G. Effinger,A Goldbach 3-Primes Theorem for Polynomials of Low Degree over Finite Fields of Characteristic 2, Journal of Number Theory, 29 (1988), 345–363.

  11. [11]

    G. Effinger,The Polynomial 3-Primes Conjecture, inComputer Assisted Analysis and Modeling on the IBM 3090, Baldwin Press, Athens, Georgia 1992.

  12. [12]

    G. Effinger and D.R. Hayes, Additive Number Theory of Polynomials over Finite Fields,Oxford University Press, 1991.

  13. [13]

    G. Effinger, K. Hicks, and G.L. Mullen,Twin Irreducible Polynomials over Finite Fields, in: Finite Fields with Applications in Coding Theory, Cryptography, and Related Areas, Springer, Heidelberg, 2002, 94–111.

  14. [14]

    J.A. Gallian,Contemporary Abstract Algebra, Houghton-Mifflin, 2002.

  15. [15]

    S. Gao,On the Deterministic Complexity of Polynomial Factoring, J. Symbolic Computation,31 (2001), 19–36.

  16. [16]

    J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Univ. Press, 1999.

  17. [17]

    H. Halberstan and H.E. Richert,Sieve Methods, Academic Press, New York, 1974.

  18. [18]

    G.H. Hardy and J.E. Littlewood,Some Problems of ‘Partitio Numerorum’; III: On the Expression of a Number as a Sum of Primes, Acta Mathematics44 (1922), 1–70.

  19. [19]

    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Clarendon Press, Oxford, 1959.

  20. [20]

    D.R. Hayes,A Goldbach Theorem for Polynomials with Integer Coefficients, Amer. Math. Monthly,72 (1965), 45–46.

  21. [21]

    D.R. Hayes,The Expression of a Polynomial As a Sum of Three Inducibles, Acta Arithmetica,11 (1966), 461–488.

  22. [22]

    A.K. Lenstra and H.W. Lenstra, Jr, editors,The Development of the Number Field Sieve, Lect. Notes in Math.,1554, Springer-Verlag, 1993.

  23. [23]

    R. Lidl and H. Niederreiter,Finite Fields, Cambridge Univ. Press, 1997.

  24. [24]

    H. Niederreiter,A New Efficient Factorization Algorithm for Polynomials over Small Finite Fields, Appl. Alg. in Eng., Comm., and Comp. 4(1993), 81–87.

  25. [25]

    T.R. Nicely,Enumeration to 1014 of the Twin Primes and Brun’s Constant, Virginia Journal of Science46 (1995) 195–204. Enumeration to 1.6 x 1016 is available from web sitehttp://www.trnicely.net.

  26. [26]

    A.M. Odlyzko, M. Rubinstein, and M. Wolf,Jumping Champions, Exp. Math. 8(1999) 107–118.

  27. [27]

    I. Peterson,Cranking Out Primes, Science News, Oct. 1, 1994, 217.

  28. [28]

    G. Polya,Heuristic Reasoning in the Theory of Numbers, Am. Math. Monthly,66 (1959), 375–384.

  29. [29]

    P. Ribenboim,The New Book of Prime Numbers, Springer-Verlag, 1995.

  30. [30]

    K. Scheicher and J.M. Thuswaldner,Digit Systems in Polynomial Rings over Finite Fields, Finite Fields Appl. 9 (2003), 322–333.

  31. [31]

    A. Selberg,Reflections around Ramanujan Centenary, Paper 41 inCollected Papers/Atle Selberg, Vol. 1, Springer-Verlag, Berlin, 1989.

  32. [32]

    P.W. Shor,Polynomial-time Algorithms for Primie Factorization and Discrete Logarithms on a Quantum Computer, SIAM J. Comp. 26 (1997), 1484–1509.

  33. [33]

    J. Teitelbaum, Review ofPrime Numbers: A Computational Perspective, Bull. Amer. Math. Soc,39 (2002), 449–454.

  34. [34]

    R.C. Vaughan,The Hardy-LittlewoodMethod (2nd ed.), Cambridge University Press, 1997.

  35. [35]

    I.M. Vinogradov,Representation of an odd number as a sum of three primes, Comptes Rendus (Doklady) de I’Academia des Sciences de I’USSR15 (1937), 291–294.

  36. [36]

    A. Weil,Sur les courbes algébriques et les variétés qui s’en déduisent, Hermann, 1948.

Download references

Author information

Correspondence to Gove Effinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Effinger, G., Hicks, K. & Mullen, G.L. Integers and polynomials: comparing the close cousins Z and F q [x]. The Mathematical Intelligencer 27, 26–34 (2005). https://doi.org/10.1007/BF02985791

Download citation

Keywords

  • Prime Number
  • Finite Field
  • Irreducible Polynomial
  • Monic Polynomial
  • Riemann Hypothesis