Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The card game set

Abstract

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, suprising, or appealing that one has an urge to pass them on.

Contributions are most welcome.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J. Bierbrauer and Y. Edel. Bounds on affine caps.J. Combin. Des., 10(2):111–115, 2002.

  2. [2]

    R. C. Bose. Mathematical theory of the symmetrical factorial design.Sankhyā, 8: 107–166, 1947.

  3. [3]

    A. R. Calderbank and P. C. Fishburn. Maximal three-independent subsets of {0,1, 2}n.Des. Codes Cryptogr., 4(3):203–211, 1994.

  4. [4]

    C. J. Colbourn and A. Rosa.Triple systems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1999.

  5. [5]

    Y. Edel. Extensions of generalized product caps. Preprint available from http://www. mathi.uni-heidelberg.de/~yves/.

  6. [6]

    Y. Edel, S. Ferret, I. Landjev, and L. Storme. The classification of the largest caps inAG(5, 3).Journal of Combinatorial Theory, Series A, 99:95–110, 2002.

  7. [7]

    W. Fulton and J. Harris.Representation theory, A first course. Readings in Mathematics. Springer-Verlag, New York, 1991.

  8. [8]

    H. T. Hall. Personal communication.

  9. [9]

    M. Hall, {jrJr.} Automorphisms of Steiner triple systems.IBM J. Res. Develop, 4:460–472, 1960.

  10. [10]

    M. Hall, {jrJr.} Steiner triple systems with a doubly transitive automorphism group.J. Combin. Theory Ser. A, 38(2): 192–202, 1985.

  11. [11]

    R. Hill. On the largest size of cap in S5,3.Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (8), 54:378–384 (1974), 1973.

  12. [12]

    R. Hill. Caps and codes.Discrete Math., 22(2):111–137, 1978.

  13. [13]

    R. Hill. On Pellegrino’s 20-caps in S4,3. InCombinatorics ‘81 (Rome, 1981), pages 433–447. North-Holland, Amsterdam, 1983.

  14. [14]

    R. Hill.A first course in coding theory. The Clarendon Press Oxford University Press, New York, 1986.

  15. [15]

    W. M. Kantor. Homogeneous designs and geometric lattices.J. Combin. Theory Ser. A, 38(1):66–74, 1985.

  16. [16]

    J. D. Key and E. E. Shult. Steiner triple systems with doubly transitive automorphism groups: a corollary to the classification theorem for finite simple groups.J. Combin. Theory Ser. A, 36(1 ):105–110, 1984.

  17. [17]

    D. Knuth. Programs setset, setset-all, set- set-random. Available from http://sunburn. stanford.edu/~knuth/programs.html.

  18. [18]

    Roy Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions.J. Combin. Theory Ser. A, 71(1):168–172, 1995.

  19. [19]

    G. Pellegrino. Sul massimo ordine delle calotte in S3,4.Matematiche (Catania), 25:149–157 (1971), 1970.

  20. [20]

    J. H. van Lint and R. M. Wilson.A course in combinatorics. Cambridge University Press, Cambridge, second edition, 2001.

Download references

Author information

Correspondence to Benjamin Lent Davis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davis, B.L., Maclagan, D. The card game set. The Mathematical Intelligencer 25, 33–40 (2003). https://doi.org/10.1007/BF02984846

Download citation

Keywords

  • Mathematical Intelligencer
  • Nonzero Vector
  • Projective Point
  • Finite Simple Group
  • Steiner Triple System