Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Log models of birationally rigid varieties

Abstract

All varieties are assumed to be projective and to be defined over ℂ. The main definitions, notation, and notions are contained in [11].

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Artin, “On isolated rational singularities of surfaces,”Amer. J. Math.,88, 129–136 (1966).

  2. 2.

    A. Beauville, “Variétiés de Prym et Jacobiennes intermédiaires,”Ann. Sci. Ecole Norm. Sup.,10, 309–399 (1977).

  3. 3.

    A. Corti, “Factorizing birational maps of threefolds after Sarkisov,”J. Alg. Geom.,4, 223–254 (1995).

  4. 4.

    I. Dolgachev, “Rational surfaces with a pencil of elliptic curves,”Izv. Akad. Nauk SSSR, Ser. Mat.,30, 1073–1100 (1966).

  5. 5.

    V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves,”Mat. Sb.,74, 608–638 (1967).

  6. 6.

    V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic manifolds,” In:Sovr. Problemy Matematiki, Vol. 12 (1978), pp. 59–157.

  7. 7.

    V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic manifolds,” In:Sovr. Problemy Matematiki, Vol. 12 (1978), pp. 159–236.

  8. 8.

    V. A. Iskovskikh and Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem,”Mat. Sb.,86, 140–166 (1971).

  9. 9.

    Yu. I. Manin, “Rational surfaces over perfect fields,”Publ. Math. IHES,30, 55–114 (1966).

  10. 10.

    Yu. I. Manin, “Rational surfaces over perfect fields: II,”Mat. Sb.,72, 161–192 (1967).

  11. 11.

    Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem,”Adv. Stud. Pure Math.,10, 283–360 (1987).

  12. 12.

    S. Keel, K. Matsuki, and J. McKernan, “Log abundance theorem for threefolds,”Duke Math. J.,75, 99–119 (1994).

  13. 13.

    J. Kollár et al., “Flips and abundance for algebraic threefolds,”Astérique,211 (1992).

  14. 14.

    J. Kollár,Rational Curves on Algebraic Varieties, Springer-Verlag (1996).

  15. 15.

    A. V. Pukhlikov, “Essentials of the method of maximal singularities,” Preprint (1996).

  16. 16.

    V. S. Sarkisov, “Birational automorphisms of fibers on conics,”Izv. Akad. Nauk SSSR, Ser. Mat.,44, 918–945 (1980).

  17. 17.

    V. G. Sarkisov, “On the structure of fibers on conics,”Izv. Akad. Nauk SSSR, Ser. Mat.,46, 371–408 (1982).

  18. 18.

    V. V. Shokurov, “3-Fold log models,”J. Math. Sci.,81, 2667–2699 (1996).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 62, Algebraic Geometry-10, 1999.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheltsov, I. Log models of birationally rigid varieties. J Math Sci 102, 3843–3875 (2000). https://doi.org/10.1007/BF02984105

Download citation

UDC 512.774

  • 512.776
  • 512.76
  • 512.724