Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Robust nonlinear control of a 6 DOF parallel manipulator : Task space approach

Abstract

This paper presents a robust nonlinear controller for a 6 degree of freedom (DOF) parallel manipulator in the task space coordinates. The proposed control strategy requires information on orientations and translations in the task space unlike the joint space or link space control scheme. Although a 6 DOF sensor may provide such information in a straightforward manner, its cost calls for a more economical alternative. A novel indirect method based on the readily available length information engages as a potential candidate to replace a 6 DOF sensor. The indirect approach generates the necessary information by solving the forward kinematics and subsequently applying alpha-beta-gamma tracker. With the 6 DOF signals available, a robust nonlinear task space control (RNTC) scheme is proposed based on the Lyapunov redesign method, whose stability is rigorously proved. The performance of the proposed RNTC with the new estimation scheme is evaluated via experiments. First, the results of the estimator are compared with the rate-gyro signals, which indicates excellent agreement. Then, the RNTC with on-line estimated 6 DOF data is shown to achieve excellent control performance to sinusoidal inputs, which is superior to those of a commonly used proportional-plus-integral-plus-derivative controller with a feedforward friction compensation under joint space coordinates and the nonlinear controller under task space coordinates.

This is a preview of subscription content, log in to check access.

References

  1. Canudus de Wit, C, Siciliano, B., and Bastin, G. 1996,Theory of Robot Control, Springer-Verlag.

  2. Corless, M. J. and Leitmann, G., 1981, “Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems,”IEEE Transactions on Automatic Control, Vol. 26, pp. 153–158.

  3. Dieudonne, J. E., Parrish, R. V. and Bardusch, R. E., 1972, “An Actuator Extension Transformation for a Motion Simulator and an Inverse Transformation applying Newton-Raphson Method,”NASA Technical Report D-7067.

  4. Fichter, E. F., 1986, “A Stewart Platform-Based Manipulator: General Theory and Practical Construction,”The International Journal of Robotics Research, Vol. 5, No. 2, pp. 157–182.

  5. Friedland, B., 1973, “Optimum Steady-State Position and Velocity Estimation Using Sampled Position data,”IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-9, No. 6, pp. 906–911.

  6. Hahn, W., 1967,Stability of Motion, Springer-Verlag, New York.

  7. Jung, G. H. and Lee, K. I., 1994, “Real-time Estimation of Stewart Platform Forward Kinematic Solution,”Transactions of the KSME, Vol. 18, No. 7, pp. 1632–1642.

  8. Rang, J.-Y., Kim. D. H.. and Lee, K. -I., 1996, “Robust Tracking Control of Stewart Platform,”Proceedings of the 35 th Conference of Decision and Control. Kobe, Japan, pp. 3014–3019.

  9. Kang, J. -Y., Kim, D. H. and Lee, K.-I., 1998, “Robust Estimator Design for Forward Kinematics Solution of a Stewart Platform,” Journal of Robotic Systems, Vol. 15. pp. 30–42.

  10. Khalil, H. K., 1996,Nonlinear Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

  11. Kim, D. H., Kang, J.-Y. and Lee, K. -I., 1999, “Nonlinear Robust Control Design for a 6 DOF Parallel Robot,”KSME International Journal, Vol. 13, No. 7, pp. 557–568.

  12. Kim, D. H., Kang, J.-Y. and Lee, K. -I., 2000, “Robust Tracking Control Design for a 6 DOF Parallel Manipulator,”Journal of Robotic Systems, Vol. 17, pp. 527–547.

  13. Lebret, G., Liu, K. and Lewis, F. L., 1993, “Dynamic Analysis and Control of a Stewart Platform Manipulator,”Journal of Robotic Systems, Vol. 10, No. 5, pp. 629–655.

  14. Lewis, F., 1986,Optimal Estimation with an Introduction to Stochastic Control Theory, John Wiley and Sons, Inc., USA.

  15. Merlet, J. P., 2000,Parallel Robots, Kluwer Academic Publisher, Netherlands.

  16. Nguyen, C.C., Antrazi, S., Zhou, Z.-L. and Campbell, C., 1993, “Adaptive Control of a Stewart Platform-Based Manipulator,”Journal of Robotic Systems, Vol. 10, No. 5, pp.657–687.

  17. Park, C.G., 1999, “Analysis of Dynamics including Leg Inertia and Robust Controller Design for a Stewart Platform,” Ph. D. thesis, Seoul National University.

  18. Radcliffe, C. J. and Southward, S. C, 1990, “A Property of Stick-Slip Friction Models which Promotes Limit Cycle Generation,”Proceedings on American Control Conference, San Diego, CA, pp. 1198–1203.

  19. Spong, M. W. and Vidyasagar, M., 1989,Robot Dynamics and Control, John Wiley & Sons, Inc.

  20. Ting, Y., Chen, Y. -S. and Wang, S. -M., 1999, “Task-space Control Algorithm for Stewart Platform,”Proceedings of the 38 th Conference on Decision and Control, Phoenix, Arizona, pp. 3857–3862.

Download references

Author information

Correspondence to Hag Seong Kim or Youngbo Shim or Young Man Cho or Kyo-II Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H.S., Shim, Y., Cho, Y.M. et al. Robust nonlinear control of a 6 DOF parallel manipulator : Task space approach. KSME International Journal 16, 1053–1063 (2002). https://doi.org/10.1007/BF02984014

Download citation

Key Words

  • 6 DOF Manipulator
  • Robust Nonlinear Task Space Control
  • Alpha-Beta-Gamma Tracker