Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Apoptotic Signaling in Multiple Myeloma: Therapeutic Implications

Abstract

Fifteen thousand new cases of multiple myeloma (MM) will occur in the United States in 2003, and the disease remains incurable. Diverse classes of chemotherapeutic agents induce cell death or apoptosis in MM cells; however, prolonged drug exposures ultimately induce chemoresistance.The mechanisms whereby MM cells resist drugs include alterations in intracellular signaling as well as adherence and cytokines in the bone marrow (BM) microenvironment. Novel agents that target the MM cell in its BM microenvironment are needed to both enhance anti-MM activity and prevent development of drug resistance. Delineation of cellular growth and apoptotic signaling pathways in MM cells may identify molecules that serve as novel therapeutic targets on the basis of interruption of MM cell growth or triggering of MM cell death.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Anderson KC. Moving disease biology from the lab to the clinic.Cancer. 2003;97(suppl 3):796–801.

  2. 2.

    Kawano MM, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myeloma.Nature. 1988;332:83–85.

  3. 3.

    Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications.Apoptosis. 2001;6:47–55.

  4. 4.

    Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma.Nat Rev Cancer. 2002;2:927–937.

  5. 5.

    Kawano MM, Ishikawa H,Tsuyama N, et al. Growth mechanism of human myeloma cells by interleukin-6.Int J Hematol. 2002;76(suppl 1):329–333.

  6. 6.

    Willie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis.Int Rev Cytol. 1980;68:251–306.

  7. 7.

    Chinnaiyan AM, Dixit VM. The cell-death machine.Curr Biol. 1996;6:555–562.

  8. 8.

    Thornberry NA, Lazebnik Y. Caspases: enemies within.Science. 1998;281:1312–1316.

  9. 9.

    Oberhammer FA, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase.J Cell Biol. 1994;126:827–837.

  10. 10.

    Enari M, Sakahira H,Yokoyama H, Okawa K, Iwanatsu A, Natata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD.Nature. 1998;391:43–50.

  11. 11.

    Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation.Nature. 1999;401:168–173.

  12. 12.

    Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspasemediated activation of ROCK I.Nat Cell Biol. 2001;3:339–345.

  13. 13.

    Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOHterminal signal anchor sequence.J Biol Chem. 1993;268:25265–25268.

  14. 14.

    Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria.Cell. 1994;79:353–364.

  15. 15.

    Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death.J Exp Med. 1995;182:367–377.

  16. 16.

    Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway.J Biol Chem. 2000;275:36152–36157.

  17. 17.

    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.Cell. 2000;102:33–42.

  18. 18.

    Chauhan D, Pandey P, Ogata A, et al. Cytochrome-c dependent and independent induction of apoptosis in multiple myeloma cells.J Biol Chem. 1997;272:29995–29997.

  19. 19.

    Kroemer G, Reed JC. Mitochondrial control of cell death.Nat Med. 2000;6:513–519.

  20. 20.

    Kharbanda S, Saxena S, Yoshida K, et al. Translocation of SAPK/ JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage.J Biol Chem. 2000;275:322–327.

  21. 21.

    Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells.J Biol Chem. 2003;278:17593–17596.

  22. 22.

    Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism.Oncogene. 1997;15:837–843.

  23. 23.

    Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells.J Biol Chem. 2001;276:24453–24456.

  24. 24.

    Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stressinduced activation of the cytochrome c-mediated death pathway.Science. 2000;288:870–874.

  25. 25.

    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell. 1993;75:241–251.

  26. 26.

    Chauhan D, Guilan L, Sattler M, et al. Superoxide-dependent and independent mitochondrial signaling during apoptosis in multiple myeloma (MM) cells.Oncogene. In press.

  27. 27.

    Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier.Mutat Res. 1999;434:243–251.

  28. 28.

    Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis.Cell Death Differ. 2002;9:6–19.

  29. 29.

    Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis.Nat Cell Biol. 2000;2:318–325.

  30. 30.

    Dalton WS. Targeting the mitochondria: an exciting new approach to myeloma therapy [commentary].Clin Cancer Res. 2002;8:3643–3645.

  31. 31.

    Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis.Blood. 2002;99:3419–3426.

  32. 32.

    Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO).Mol Cancer Ther. 2002;1:1051–1058.

  33. 33.

    Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells.Blood. 2001;98:805–813.

  34. 34.

    Dvorakova K, Waltmire CN, Payne CM, Tome ME, Briehl MM, Dorr RT. Induction of mitochondrial changes in myeloma cells by imexon.Blood. 2001;97:3544–3551.

  35. 35.

    Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6.Blood. 2002;99:2172–2178.

  36. 36.

    Alexanian R, Barlogie B, Dixon D. High dose glucocorticoid treatment of resistant myeloma.Ann Intern Med. 1986;105:8–11.

  37. 37.

    Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells.J Biol Chem. 2000;275:27845–27850.

  38. 38.

    Chatterjee M, Honemann D, Lentzsch S, et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway.Blood. 2002;100:3311–3318.

  39. 39.

    Le Gouill S, Pellat-Deceunynck C, Harousseau JL, et al. Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells.Leukemia. 2002;16:1664–1667.

  40. 40.

    Bolick SC, Landowski TH, Boulware D, et al. The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells.Leukemia. 2003;17:451–457.

  41. 41.

    Uchiyama H, Anderson KC. Cellular adhesion molecules.Transfus Med Rev. 1994;8:84–95.

  42. 42.

    Raje N, Anderson KC. Thalidomide: a revival story.N Engl J Med. 1999;341:1606–1609.

  43. 43.

    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines.Blood. 1999;93:1658–1667.

  44. 44.

    Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates IL-6 secretion.Blood. 1993;82:3712–3720.

  45. 45.

    Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B.Blood. 1996;87:1104–1112.

  46. 46.

    Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma.J Biol Chem. 2002;277:16639–16647.

  47. 47.

    Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis.Blood. 2003;101:1053–1062.

  48. 48.

    Akiyama M, Hideshima T, Hayashi T, et al. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein.Cancer Res. 2003;63:18–21.

  49. 49.

    Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications.Blood. 2002;99:4079–4086.

  50. 50.

    Kawano MM, Huang N, Tanaka H, et al. Homotypic cell aggregations of human myeloma cells with ICAM-1 and LFA-1 molecules.Br J Haematol. 1991;79:583–588.

  51. 51.

    Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma.Oncogene. 2001;20:5991–6000.

  52. 52.

    Qiang YW, Kopantzev E, Rudikoff S. Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk.Blood. 2002;99:4138–4146.

  53. 53.

    Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications.Oncogene. 2002;21:5673–5683.

  54. 54.

    Tassone P, Forciniti S, Galea E, et al. Synergistic induction of growth arrest and apoptosis of human myeloma cells by the IL-6 super-antagonist Sant7 and dexamethasone.Cell Death Differ. 2000;7:327–328.

  55. 55.

    Hirata T, Shimazaki C, Sumikuma T, et al. Humanized anti-interleukin-6 receptor monoclonal antibody induced apoptosis of fresh and cloned human myeloma cells in vitro.Leuk Res. 2003;27:343–349.

  56. 56.

    Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells.Proc Natl Acad Sci U S A. 2002;99:14374–14379.

  57. 57.

    Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells.Blood. 2003;101:4055–4062.

  58. 58.

    van de Donk NW, Kamphuis MM, van Dijk M, Borst HP, Bloem AC, Lokhorst HM. Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein.Leukemia. 2003;17:211–219.

  59. 59.

    Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells.Blood. 2002;100:194–199.

  60. 60.

    Pruneri G, Carboni N, Baldini L, et al. Cell cycle regulators in multiple myeloma: prognostic implications of p53 nuclear accumulation.Hum Pathol. 2003;34:41–47.

  61. 61.

    Semenov I,Akyuz C, Roginskaya V, Chauhan D, Corey SJ. Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol.Leuk Res. 2002;26:271–280.

  62. 62.

    Otsuki T, Hata H, Harada N, et al. Cellular biological differences between human myeloma cell lines KMS-12-PE and KMS-12-BM established from a single patient.Int J Hematol. 2000;72:216–222.

  63. 63.

    Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein.Blood. 1996;88:2219–2227.

  64. 64.

    Chauhan D, Hideshima T, Treon S, et al. Functional interaction between retinoblastoma protein and stress-activated protein kinase in multiple myeloma cells.Cancer Res. 1999;59:1192–1195.

  65. 65.

    Dai Y, Landowski TH, Rosen ST, Dent P, Grant S. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism.Blood. 2002;100:3333–3343.

  66. 66.

    Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis.Clin Cancer Res. 2003;9:316–326.

  67. 67.

    Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma.Cancer Res. 2003;63:287–289.

Download references

Author information

Correspondence to Dharminder Chauhan or Teru Hideshima or Kenneth C. Anderson.

About this article

Cite this article

Chauhan, D., Hideshima, T. & Anderson, K.C. Apoptotic Signaling in Multiple Myeloma: Therapeutic Implications. Int J Hematol 78, 114–120 (2003). https://doi.org/10.1007/BF02983378

Download citation

Key words

  • Multiple myeloma
  • Apoptotic signaling
  • Drug resistance