Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Time-discretization of nonlinear systems with delayed multi-input using Taylor series


This study proposes a new scheme for the sampled-data representation of nonlinear systems with time-delayed multi-input. The proposed scheme is based on the Taylor-series expansion and zero-order hold assumption. The mathematical structure of a new discretization scheme is explored. On the basis of this structure, the sampled-data representation of nonlinear systems including time-delay is derived. The new scheme is applied to nonlinear systems with two inputs and then the delayed multi-input general equation is derived. The resulting time-discretization provides a finite-dimensional representation of nonlinear control systems with time-delay enabling existing controller design techniques to be applied to them. In order to evaluate the tracking performance of the proposed scheme, an algorithm is tested for some of the examples including maneuvering of an automobile and a 2-DOF mechanical system.

This is a preview of subscription content, log in to check access.


  1. Byeon, K. S. and Song, J. B., 1997, “Control of Throttle Actuator System based on Time Delay Control,”KSMEA, Vol.21, No. 12, pp. 2081–2090, in Korea.

  2. Choi, B. H., Jung, W. J. and Choi, H. R., 1999, “Study for Control of Master-Slave Teleoperation System with Time Delay,”KSMEA, Vol. 23, No. 1, pp. 57–65, in Korea.

  3. Choi, J. S. and Baek, Y. S., 2002, “A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer,”KSME Int. J., Vol. 16, No. 12, pp. 1643–1651, in Korea.

  4. Franklin, G. F., Powell, J. D. and Workman, M. L., 1998,Digital Control of Dynamic Systems. Addison-Wesley, New York.

  5. Henk Nijmeijer and Arjan van der Schaft, 1990,Nonlinear dynamical control systems. Springer-Verlag, New York.

  6. Hong, K. S. and Wu, J. W., 1994, “Stability and Coefficients Properties of Polynomials of Linear Discrete Systems,”KSME Int. J., Vol. 8, No. 1, pp. 1–5, in Korea.

  7. Jeong, K. W. and Lee, S. H., 1995,” Design of Robust Controller for Teleoperated Robot System with Time Delay,”KSME, Vol. 19, No. 12, pp. 3141–3150, in Korea.

  8. Kang, S. J. and Park, K. S., 1999, “Discretization-Based Analysis of Structural Electrodynamics,”KSME Int. J., Vol. 13, No. 11, pp. 842–850, in Korea.

  9. Kazantzis, N. and Kravaris, C., 1997, “System-Theoretic Properties of Sampled-Data Representations of Nonlinear Systems Obtained via Taylor-Lie Series,”Int. J. Control., Vol. 67, pp. 997–1020.

  10. Kazantzis, N. and Kravaris, C., 1999, “Time-Discretization of Nonlinear Control Systems via Taylor Methods,”Comp. Chem. Engn., Vol. 23, pp. 763–784.

  11. Kazantzis, N., Chong, K. T., Park, J. H. and Parlos, A. G., 2003, “Control-relevant Discretization of Nonlinear Systems with Time-Delay Using Taylor-Lie Series,”American Control Conference, pp. 149–154.

  12. Kwon, O. S., Chang, P. H. and Jung, J. H., 2002, “Stability Analysis of Time Delay Controller for General Plants,”KSMEA, Vol. 26, No. 6, pp. 1035–1046, in Korea.

  13. Lee, J.W. and Chang, P. H., 1999, “Input/ Output Linearization using Time Delay Control and Time Delay Observer,”KSME Int. J., Vol. 13, No. 7, pp. 546–556, in Korea.

  14. Park, J. H., 2004, “Discretization of Nonlinear System with Time-Delay via Taylor Series,” M. S. Thesis, Chonbuk National University, Jeon-Ju, Feb, in Korea.

  15. Svoronos, S. A., Papageorgiou, D. and Tsiligiannis, C., 1994, “Discretization of Nonlinear Control Systems via the Carleman Linearization,”Chem. Engin. Sci., Vol. 49, pp. 3263–3267.

  16. Vaccaro, R. J., 1995,Digital Control. McGraw-Hill, New York.

  17. Vidyasagar, M., 1978,Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs.

Download references

Author information

Correspondence to Ji Hyang Park or Kil To Chong or Nikolaos Kazantzis or Alexander G. Parlos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, J.H., Chong, K.T., Kazantzis, N. et al. Time-discretization of nonlinear systems with delayed multi-input using Taylor series. KSME International Journal 18, 1107–1120 (2004). https://doi.org/10.1007/BF02983285

Download citation

Key Words

  • Nonlinear System
  • Time-Discretization
  • Time-Delay
  • Multi-Input
  • Taylor-Series