Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The genetic structure ofTulipa

III. Meiosis in polyploids

Summary

1. The tetraploid tulip species have a lower chiasma frequency at meiosis than the diploids and triploids and fewer changes of partner at pachytene than the latter. Consequently although autotetraploid, they form few quadrivalents and are sexually fertile.

2. The quadrivalents that they form may be classified in two ways:

  1. (a)

    According to the distribution of chiasmata among the four chromosomes. This shows to which of the ten possible types of quadrivalent they belong. These types depend on the number of changes of partner at pachytene and on the symmetry, half-symmetry or asymmetry of the chiasma distributions per chromosome.

  2. (b)

    According to the co-orientation of the centromeres at the first metaphase of meiosis, whether convergent, linear or indifferent. The type of co-orientation depends upon the distances apart of the centromeres in the multivalent at the time metaphase begins. Co-orientation fails altogether when the centromeres are further apart than they can be in bivalents. These principles agree with the repulsion theory of orientation.

3. The inter- and intranuclear mean squares show no significant correlation of chiasma frequency in the diploids. A slightly positive correlation in the tetraploids and variable correlation in the triploids is presumably to be attributed to the number of changes of partner their chromosomes undergo and to variable external conditions.

This is a preview of subscription content, log in to check access.

References

  1. Crane, M. B. &Thomas, P. T. (1939). “Genetical studies in pears. I. The origin and behaviour of a new giant form.”J. Genet.37, 287–299.

  2. Darlington, C. D. (1929). “Meiosis in polyploids. II.”J. Genet.21, 17–56.

  3. —— (1930). “Studies inPrunus. III.”J. Genet. 22, 65–93.

  4. —— (1931). “Meiosis in diploid and tetraploidPrimula sinensis.”J. Genet. 24, 65–96.

  5. —— (1935). “Internal mechanics of the chromosomes. I–III.”Proc. roy. Soc. B,118, 33–96.

  6. —— (1936a). “The analysis of chromosome movements. I.Podophyllum versipelle.”Cytologia, Tokyo,7, 242–7.

  7. —— (1936b). “The external mechanics of the chromosomes. I–IV.”Proc. roy. Soc. B,121, 264–319.

  8. —— (1936c). “Crossing-over and its mechanical relationships inChorthippus andStauroderus.”J. Genet. 33, 465–500.

  9. —— (1937).Recent Advances in Cytology, 2nd ed. London: Churchill.

  10. Darlington, C. D. &Gairdner, A. E. (1937). “The variation system inCampanula persicifolia.”J. Genet.35, 97–128.

  11. Darlington, C. D. &Janaki-Ammal, E. K. (1932). “The origin and behaviour of chiasmata. I. Diploid and tetraploidTulipa.”Bot. Gaz.93, 296–312.

  12. Darlington, C. D. &Mather, K. (1932). “The origin and behaviour of chiasmata. III. TriploidTulipa.”Cytologia, Tokyo,4, 1–15.

  13. Haldane, J. B. S. (1931). “The cytological basis of genetical interference.”Cytologia, Tokyo,3, 54–65.

  14. Klingstedt, H. (1937). “On some tetraploid spermatocytes inChrysochraon dispar (Orth.).”Mem. Soc. Fauna Flora Fenn.12, 194–209.

  15. Lawrence, W. J. C. (1931). “The genetics and cytology ofDahlia variabilis.”J. Genet.24, 257–306.

  16. Levan, A. (1933). “Cytological studies inAllium. III.”Hereditas, Lund,18, 101–14.

  17. —— (1936). “Cytological studies inAllium. III.”Hereditas, Lund,18, 101–14.

  18. —— (1936). “Zytologische Studien enAllium Schoenoprasum.”Hereditas, Lund,22, 1–128.

  19. —— (1937). “Cytological studies in theAllium paniculatum group.”Hereditas, Lund,23, 317–70.

  20. McClintock, B. (1933). “The association of non-homologous parts of chromosomes in the mid-prophase of meiosis inZea Mays.”Z. Zellforsch.19, 191–237.

  21. Mather, K. (1936). “Competition between bivalents during chiasma formation.”Proc. roy. Soc. B,120, 208–27.

  22. -- (1939). “Competition for chiasmata in diploid and trisomic maize.”Chromosoma,1 (in the Press).

  23. Moffett, A. A. (1932). “Studies in the formation of multinuclear giant pollen grains inKniphofia.”J. Genet.25, 315–37.

  24. —— (1936). “The origin and behaviour of chiasmata. XIII. Diploid and tetraploidCulex pipiens.”Cytologia, Tokyo,7, 184–97.

  25. Müntzing, A. (1936). “The evolutionary significance of autopolyploidy.”Hereditas, Lund,21, 263–378.

  26. Newton, W. C. F. (1927). “Chromosome studies inTulipa and some related genera.”J. linn. Soc. (Bot.),47, 339–54.

  27. Newton, W. C. F. &Darlington, C. D. (1929). “Meiosis in polyploids. I.”J. Genet.21, 1–16.

  28. Ribbands, C. R. (1937). “The consequences of structural hybridity at meiosis inLilium × testaceum.”J. Genet.35, 1–24.

  29. Richardson, M. M. (1936). “Structural hybridity inLilium Martagon album × L. Hansonii.”J. Genet.32, 411–50.

  30. Shimotomai, N. (1933). “Zur Karyogenetik der Gattung Chrysanthemum.”J. Sci. Hiroshima Univ. B,2, 1–100.

  31. Upcott, M. (1935). “The cytology of triploid and tetraploidLycopersicum esculentum.”J. Genet.31, 1–19.

  32. —— (1937a). “The genetic structure ofTulipa. II. Structural hybridity.”J. Genet. 34, 339–98.

  33. —— (1937b). “The external mechanics of the chromosomes. VI. The behaviour of the centromere at meiosis.”Proc. roy. Soc. B,124, 336–61.

  34. Upcott, M. &La Cour, L. (1936). “The genetic structure ofTulipa. I. A chromosome survey.”J. Genet.33, 237–54.

Download references

Author information

Correspondence to Margaret Upcott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Upcott, M. The genetic structure ofTulipa . Journ. of Genetics 37, 303–339 (1939). https://doi.org/10.1007/BF02982732

Download citation

Keywords

  • Side View
  • Extra Chromosome
  • Chiasma Frequency
  • Chromosome Race
  • Pachytene Nucleus