Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modelling critical levels of ozone for the forested area of austria modifications of the aot40 concept


Goal, Scope and Background

Ozone is the most important air pollutant in Europe for forest ecosystems and the increase in the last decades is significant. The ozone impact on forests can be calculated and mapped based on the provisional European Critical Level (AOT40 = accumulated exposure over a threshold of 40 ppb, 10,000 ppb.h for 6 months of one growing season calculated for 24h day-1).

For Norway spruce, the Austrian main tree species, the ozone risk was assessed in a basis approach and because the calculations do not reflect the health status of forests in Austria, the AOT40 concept was developed.


Three approaches were outlined and maps were generated for Norway spruce forests covering the entire area of Austria.

  1. The 1st approach modifies the AOT40 due to the assumption that forests have adapted to the pre-industrial levels of ozone, which increase with altitude (AOTalt).

  2. The 2nd approach modifies the AOT40 according to the ozone concentration in the sub-stomata cavity. This approach is based on such factors as light intensity and water vapour saturation deficit, which affect stomatal uptake (AOTsto).

  3. The 3rd approach combines both approaches and includes the hemeroby. The pre-industrial ozone level approach was applied for autochthonous (‘natural’) forest areas, the ozone-uptake approach for non-autochthonous (‘altered’) forest areas.

Results and Discussion

The provisional Critical Level (AOT40) was established to allow a uniform assessment of the ozone risk for forested areas in Europe. In Austria, where ozone risk is assessed with utmost accuracy due to the dense grid of monitoring plots of the Forest Inventory and because the continuously collected data from more than 100 air quality measuring stations, an exceedance up to the five fold of the Critical Level was found. The result could lead to a yield loss of up to 30–40% and to a severe deterioration in the forest health status. However, the data of the Austrian Forest Inventory and the Austrian Forest Damage Monitoring System do not reflect such an ozone impact. Therefore, various approaches were outlined including the tolerance and avoidance mechanisms of Norway spruce against ozone impact.

Taking into consideration the adaptation of forests to the pre-industrial background level of ozone, the AOT40 exceedances are markedly reduced (1st approach). Taking into account the stomatal uptake of ozone, unrealistic high amounts of exceedances up to 10,000 ppb.h were found. The modelled risk does not correspond with the health status and the wood increment of the Austrian forests (2nd approach). Consolidating the forgoing two approaches, a final map including the hemeroby was generated. It became clear that the less natural (‘altered’) forested regions are highly polluted. This means, that more than half of the spruce forests are endangered by ozone impact and AOT40 values of up to 30,000 ppb.h occur (3rd approach).


The approaches revealed that a plausible result concerning the ozone impact on spruce forests in Austria could only be reached by combining pre-industrial ozone levels, ozone flux into the spruce needles and the hemeroby of forests.

This is a preview of subscription content, log in to check access.


  1. Albold A (1999): Untersuchungen zum ultravioletten Strahlungstransfer im alpinen Gelände. Schriftenreihe des Fraunhofer Instituts Atmosphärische Umweltforschung. Vol. 61–1999. Shaker Verlag Garmisch-Partenkirchen

  2. Beilke S (2000): Langzeitentwicklung der Ozonbelastung im globalen, nationalen und regionalen Maßstab. Troposphärisches Ozon, Symposium 8.–10. 2. 2000 in Braunschweig, Proceedings 55–82

  3. Blumthaler M, Ambach W, EllingerR (1997): Increase in solar UV radiation with altitude. Journal of Photochemistry and Pho-tobiology B. Biology 39, 130–134

  4. Bolhar-Nordenkampf HR (ed., 1989): Stressphysiologische Ökosystemforschung Höhenprofil Zillertal. Phyton (Horn, Aus- tria) 29, (3)

  5. Bolhàr-Nordenkampf HR (1999): Pflanzenphysiologische Untersuchungen zur Evaluierung der baumspezifischen Ozonbelastungskarte unter Berücksichtigung standortspezifischer Stressoren-muster. Projektbericht im Auftrag des BMLF, Vertrag Nr. 56.820/15-VA2b98, Universität Wien

  6. Bolhàr-Nordenkampf HR, Loibl W, Gatscher B (1999): Adaption to pre-industrial ozone concentrations - The cause for a fundamental change in the Austrian ozone risk map. Proceedings UNECE-Meeting Suisse, Bern-Gerzensee 1999

  7. Bolhar-Nordenkampf HR, Loibl W, Smidt S, Herman F (2001): Ökophysiologische Evaluierung der baumspezifischen Ozonbelastungskarte. 14. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Proceedings, pp. 31–32. June 13–16, 2001. ISSN 3-901347-31-3

  8. Bundesforschungsanstalt für Forst- und Holzwirtschaft (1999): Der Waldzustand in Europa. Kurzbericht 1999. UN/ECE-EC, Genf und Brüssel

  9. Emberson LD, Ashmore MR, Cambridge HM, SimpsonD, Tuovinen JP (2000a): Modelling stomatal ozone flux across Europe. Environmental Pollution 109, 403–413 (Elsevier)

  10. Emberson LD, Wieser G, Ashmore MR (2000b): Modelling of stomatal conductance and ozone flux of Norway spruce comparison with field data. Environmental Pollution 109, 393- 402 (Elsevier)

  11. Federal Research Centre (1998): Forest Condition in Europe. 1998 Executive Report

  12. Fowler et al. (eds., 1997): Ozone in the United Kingdom. ISBN 1- 870393-30-9

  13. Fuhrer J (1995): Key elements in ozone risk analysis. In: Exceed-ance of Critical Loads and Levels. Umweltbundesamt (ed.), Conference Papers 15, 8–17

  14. Fuhrer J, Achermann B (1999): Critical Levels for ozone - Level II. Environmental Documentation, 115. Swiss Agency for Environment, Forest and Landscape, Bern, Switzerland Fuhrer J (ed., 2000): Risk Assessment for Ozone - Effects on Vegetation in Europe. Environmental Pollution 109 (Elsevier)

  15. Goff A, GratchS (1945): Thermodynamic properties of moist air/ ASHVE Research report no. 1270, ASHVE Trans. 51,125–164

  16. Grabherr G, Koch G, Kirchmeir H, Reiter K (1998): Hemerobie österreichischer Waldökosysteme. ÖAW-Veröffentlichungen des österreichischen MaB-Programmes, 17. Universitätsverlag Wagner, Innsbruck

  17. Gregori M (1992): Höhenabhängigkeit der trockenen Deposition von Stickstoff- und Schwefelverbindungen sowie Ozon in einem Alpental. Doctoral Thesis, Technical University Vienna

  18. Grünhage L, Jäger HJ, Haenel HD, Löpmeier FJ, HanewaldK (1999): The European critical levels for ozone: improving their usage. Environmental Pollution 105,163–173 (Elsevier)

  19. Grünhage L, Krause GHM, Köllner B, Bender J, Weigel HJ, Jäger HJ, GuderianR (2001): A new flux-oriented concept to derive critical levels for ozone to protect vegetation. Environmental Pollution 111, 355–363 (Elsevier)

  20. GuderianR (1985): Air pollution by photochemical oxidants. Springer Berlin, Heidelberg, New York

  21. Havens KE, Jones KC, Krupa SV, Erisman JW (eds, 2000): Risk assessment for ozone-effects on vegetation in Europe. Environmental Pollution 109 (Elsevier)

  22. Herman F, Smidt S, Huber S, Englisch M, KnoflacherM (2001): Evaluation of pollution-related stress factors for forest ecosystems in Central Europe. ESPR - Environmental Science and Pollution Research 8, 231–242

  23. Innes JJ, Skelly JM, Schaub M (2001): Ozone and broadleaved trees. Verlag Haupt

  24. Jäger HJ, Unsworth M, De Temmerman L, Mathy P (1992): Effects of air pollution on agricultural crops in Europe (Commission of the European Communities), Report No. 46, Belgium

  25. Karlsson PE, Pleijel H, Karlsson GP, Medin EL, SkärbyL (2000): Simulation of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environmental Pollution 109 (3) 443–452 (Elsevier)

  26. Karlsson PE, Sellden G, Pleijel H (eds, 2003): Establishing ozone Critical Levels II, UN-ECE Workshop Report. Göteborg, Nov. 19–22

  27. Krause GHM, Köllner B (2000): Wirkungen auf Bäume und Waldökosysteme. Troposphärisches Ozon, Symposium 8.-10.2.2000 in Braunschweig, Proceedings 93–114

  28. Kromp-Kolb H (2001): Spektrale UV-Strahlung im Wiener Raum und integrale UV-Messung am Hohen Sonnblick. Projektbericht. Institut für Meteorologie und Physik der Universität für Bodenkultur, Wien

  29. Kubier J, Bergh H, RüsselA (2001): Long-term trends of primary and secondary pollutant concentrations in Switzerland and their response to emission controls and economic changes. Atmospheric Environment 35,1351–1363

  30. Lee EH, Tingey DT, Hogsett WE (1988): Evaluation of ozone exposure indices in exposure-response modelling. Environmental Pollution 53, 43–62 (Elsevier)

  31. Loibl W, Winiwarter W, Kopcsa A, Züger J, BaumannR (1994): • Estimating the spatial distribution of ozone concentrations in complex terrain using a function of elevation and day time and Kriging techniques. Atmospheric Environment 28 (16) 2557–2566

  32. Loibl W (1996): Spatial modelling of accumulated ozone exposure in alpine regions considering daytime and elevation-de- pendence - Comparison of different ozone exposure patterns. Proceedings of the Workshop on Critical Levels for ozone in Europe: Testing and finalising the concepts. Univ. of Kuopio, Finland

  33. Loibl W, SmidtS (1996): Ozone exposure - Areas of potential ozone risk for selected tree species in Austria. ESPR -Environmental Science and Pollution Research 3 (4) 213–217

  34. LoiblW (1997): Modelling tropospheric ozone distribution considering the spatio-temporal dependencies within complex terrain; In: Kraak MJ, MolenaarM (eds.): Advances in GIS Reseach II. Taylor & Francis Ltd. London, 667 - 678

  35. Loibl W, Kopcsa A, Züger (1999): Critical Levels - Karten für Ozon für ausgewählte Waldgebiete: Berechnung eines modifizierten AOT40 Level II - Ozonaufnahme abhängig von Witterungsbedingungen - Endbericht im Auftrag des Bundesministeriums für Land-und Forstwirtschaft. Seibersdorf

  36. Loibl W, Züger J (2000): Critical Levels - Karten für Ozon für ausgewählte Waldgebiete: Berechnung eines modifizierten AOT40 Level II - Ozonaufnahme abhängig von Witterungsbedingungen unter Berücksichtigung der Bodenfeuchte, Vorläufiger Endbericht im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Seibersdorf

  37. McKenzie RL, Johnston PV, SmaleD (2001): Altitude effects on UV spectral irradiance deduced from measurements at Lauder, New Zealand, and Mauna Loa Observatory, Hawaii. Journal of Geophysical Research. 106 (D19), 22, 845–22, 860

  38. Morgan PB, Ainsworth EA, Long SP (2003): How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment 28 (8), 1317–1328

  39. Musselman RC, Massman WJ (1999): Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmospheric Environment 33, 65–73

  40. Nagel HD, Gregor HD (Hrsg., 1999): Ökologische Belastungsgrenzen. Critical Loads and Levels. Spinger Verlag

  41. NFP14+ (National Research Program, 1991): Lufthaushalt, Luftverschutzung und Waldsterben in der Schweiz. Programmleitung NFP14+, Vol. 1-5. Verlag der Fachvereine Zürich

  42. Österreichische Akademie der Wissenschaften (1989): Luftqualitätskriterien Ozon. Bundesministerium für Umwelt, Jugend und Familie. Wien

  43. PiazenaH (1996): The effect of altitude upon the solar UVB and UVA irradiance in the tropical Chilean Andes. Solar Energy 57 (2) 133–140

  44. Puxbaum H, Gabler K, Smidt S, GlattesF (1991): A one-year record of ozone profiles in an alpine valley (Zillertal/Tyrol, 600-2000 m a.s.l.). Atmospheric Environment 25A (9) 1759- 1765

  45. Reichenauer T, Bolhàr-Nordenkampf HR, Ehrlich U, SojaG, Halbwachs F, Postl WF (1997): The influence of ambient and elevated ozone concentrations on photosynthesis inPopulus nigra. PCE 20/8,1061–1069

  46. Reiter R (1991): On the mean daily and seasonal variations of the vertical ozone profiles in the lower troposphere. Atmospheric Environment 25A, 1751-1757

  47. Sandermann H, Wellburn AR, Heath RL (eds., 1997): Forest decline and ozone. Ecological Series 127 (Springer Verlag)

  48. Schadauer K (1996): Growth trends in Austria. In: Spiecker H (ed.), Growth trends in European forests. Studies from 12 countries, European Forest Institute Research Report 5, 275–289

  49. Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998): Impacts of ozone to forests: A European perspective. New Phytologist, 139,109–122

  50. Schieler K, Büchsenmeister R, Schadauer K (1995): Österreichische Forstinventur. Ergebnisse 1986/90. FBVA-Berichte, 92. Wien

  51. Schweizerisches Department des Inneren (1985): Schweizerische Luftreinhalteverordnung

  52. Simpson D, Olendrzynski K, Semb A, Stören E, Unger S (1997): Photochemical oxidant modeling in Europe: multi-annual modelling and source receptor relatinsships. EMEP/MSC-W Report 3/97, Norwegian Meterorological Institute, Oslo

  53. Smidt S, Gabler K, HalbwachsG (1992): Auswertung von österreichischen Ozonmessdaten im Hinblick auf wirkungsbezogene Grenzwerte. Staub Reinh. Luft 51, 43–49

  54. Smidt S, LoiblW (1996): Baumartenspezifische Darstellung ozonbelasteter Waldgebiete. FBVA-Berichte, 94, 255–270. Wien

  55. Smidt S, Block J, Jandl R, GehrmannJ (1999): Trends von Luftschadstoffkonzentrationen und-depositionen an Waldmessstationen in Österreich und Deutschland. Centralblatt für das gesamte Forstwesen 116 (3) 193–209

  56. Spangl W (2002): Luftgütemessstellen in Österreich. Umweltbundesamt, Berichte BE-213, ISBN 85457-660-9

  57. Stockwell WR, Kramm G, Scheel HE, Mohnen VA, Seiler W (1997): Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H, Wellburn AE, Heath RL (eds.), Forest decline and ozone. Ecological Studies, 127. Springer

  58. Umweltbundesamt (Berlin; 1997): Daten zur Umwelt, Ausgabe 1997. Erich Schmidt Verlag.

  59. UN-ECE (1994): Critical Levels for ozone. A UN-ECE Workshop Report (Fuhrer J & Achermann B, eds.). Schriftenreihe der FAC Liebefeld 16, 1994

  60. Verein Deutscher Ingenieure (1989): VDI-Richtlinie 2310, Blatt 6: Maximale Immissionskonzentrationen für Ozon

  61. Weihs P, Dirmhirn I, Czerwenka-Wenkstetten IM (1995): Messungen der spektralen UV-Strahlung in Bayern in unterschiedlichen Seehöhen. Wetter und Leben 47 (1) 3–20

  62. Wieser G, Havranek WM (1993): Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7, 227–232

  63. Wieser G, Havranek WM (1995): Environmental control of ozone uptake ofLarix decidua (Mill.): A comparison between different altitudes. Tree Physiology 15, 253–258

  64. Wieser G, Havranek WM (1996): Evaluation of ozone impact on mature spruce and larch in the field. Journal of Plant Physiology 146,189–194

  65. WieserG (1997): Ozone impact on photosynthetic capacity of mature and young Norway spruce(Picea abies [L.] Karst.): External versus internal exposure. Phyton (Horn, Austria) 37, 297–302

  66. Wieser G, Emberson LD (2003): Stomatalconductance, key factors in controlling ozone flux into the leaves of forest trees. A case study inPicea abies. In: Establishing ozone Critical Levels II. UN-ECE Workshop Report, IVL, 2003, 280-292

Download references

Author information

Correspondence to Wolfgang Loibl or Harald R. Bolhàr-Nordenkampf or Friedl Herman or Stefan Smidt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loibl, W., Bolhàr-Nordenkampf, H.R., Herman, F. et al. Modelling critical levels of ozone for the forested area of austria modifications of the aot40 concept. Environ Sci & Pollut Res 11, 171 (2004).

Download citation


  • AOT40 modification
  • adaptation
  • Austria
  • forested areas
  • hemeroby
  • Norway spruce forests
  • ozone risk modelling
  • ozone uptake