Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Data quality and uncertainty in LCI

  • 444 Accesses

  • 33 Citations

Abstract

It has recently been acknowledged that the quality of data used in Life Cycle Assessment (LCA) is one of the most important limiting factors to the application of the methodology. Early approaches dealing with this problem solely based on Data Quality Indicators (DQI) have revealed their limitations, and stochastic models are increasingly proposed as an alternative. Although facing methodological and practical difficulties, for instance the characterization of the distribution of input data, these stochastic models can significantly enhance decision-making in LCA. Uncertainty and data quality, however, are two distinct attributes. No matter how sophisticated the stochastic models are, they do not address the issue of the adequacy of the data used with regard to the goal of the study. Actual data on the distribution of SO emissions for US coal fired power plants for instance, would be of low quality for a European study. It is therefore believed that mixed approaches DQI/stochastic models should be developed in the future.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Life Cycle Assessment Daw Quality: A Conceptual Framework. 1994. Society of Environmental Toxicology and Chemistry. 1994. Pensncola, Florida

  2. [2]

    Guidelines for Assessing the Quality of Life Cycle Inventory Data. 1995. U.S. Environmental Protection Agency. EPA/ 530- R-95-010

  3. [3]

    Environmental Management—Life Cycle Assessment—Goal and Scope Definition and Inventory Analysis. March 5, 1997. Draft International Standard 14041. International Organization for Standardization

  4. [4]

    Risk Policy Report—February 21, 1997, Vol. 3 N. 2 p 6

  5. [5]

    Kennedy, D.J. et al: Stochastic Environmental Life Cycle Assessment Modeling. 1996. Int. J. LCA 1 (4) 199–207

  6. [6]

    Besnainou, J. and Coulon, R.: Uncertainty, Complexity and Decision in LCA. Proceedings of the second international conference on EcoBalance. Nov. 18-20, 1996. Tsukuba, Japan

  7. [7]

    Weidema, B.P. and Wesnoes, M.S.: Data Quality Management for Life Cycle Inventories—An Example of Using Data Quality Indicators. Presented at the 1995 SETAC World Congress

  8. [8]

    Norris, G.A.: Picking Winners and Telling Alternatives Apart: Practicing LCIA Decision Making in the Presence of Uncertainty. June 1996. 89th Annual Meeting Air & Waste Management Association

  9. [9]

    Funtowicz, S. O. and Ravetz, J.R.: Uncertainty and Quality in Science for Policy. Kluvver Academic Publishers, The Netherlands

Download references

Author information

Correspondence to Remi Coulon or Vincent Camobreco or Helene Teulon or Jacques Besnainou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coulon, R., Camobreco, V., Teulon, H. et al. Data quality and uncertainty in LCI. Int. J. LCA 2, 178 (1997). https://doi.org/10.1007/BF02978816

Download citation

Keywords

  • Data Quality Indicators (DQI)
  • data quality, LCA
  • decision-making in LCA
  • DQI
  • stochastic models
  • LCA
  • Life Cycle Assessment
  • quality of data
  • LCA
  • stochastic models
  • uncertainty
  • data quality