Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of quinine on catecholamine release evoked by cholinergic stimulation and membrane depolarization from the rat adrenal gland

  • 22 Accesses

  • 1 Citations

Abstract

The present study was attempted to investigate the effect of quinine on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal gland. The perfusion of quinine (15-150 μM) into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretion evoked by ACh (5.32 × 10-3M), high K+ (5.6 × 10-2M), DMPP (10-4 M for 2 min), McN-A-343 (10-4 M for 2 min), cyclopiazonic acid (10-5 M for 4 min) and Bay-K-8644 (10-5M for 4 min). Also, under the presence of pinacidil (10-4 M), which is also known to be a selective potassium channel activator, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also greatly reduced. When preloaded along with quinine (5 × 10-5 M) and glibenclamide (10-6 M), a specific blocker of ATP-regulated potassium channels, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered as compared to those of quinine-treatment only. Taken together, these results demonstrate that quinine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization through inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. These findings suggest that activation of potassium channels may be involved at least in inhibitory action of quinine on CA secretion from the rat adrenal gland.

This is a preview of subscription content, log in to check access.

References

  1. Ahnfelt-Ronne, I., Pinadicil: History, basic pharmacology, and therapeutic implications.J. Cardiovasc. Pharmacol., 12 (Suppl. 2), S1-S4 (1988).

  2. Akaike, A., Mine, Y., Sasa, M., and Takaori, S., Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells.J. Pharmacol. Expt. Ther., 255, 333–339 (1990).

  3. Anton, A. H., and Sayre D. F., A stydy of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines.J. Pharmacol. Exp. Ther., 138, 360–375 (1962).

  4. Armando-Hardy, M., Ellory, J. C., Ferreira, H. C., Fleminger, S., and Lew, V. L., Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine.J. Physiol., 250, 32–33 (1975).

  5. Artalejo, A. R., Garcia, A. G., and Neher, E., Small-conductance Ca2+-activated K+ channels in bovine chromaffin cells.Pflugers. Arch., 423, 97–103 (1993).

  6. Ashcroft, R. M., Adenosine 5′-triphosphate-sensitive potassium channels.Annu. Rev. Neurosci., 11, 763–770 (1988).

  7. Atwater, I., Dawon, C. M., Ribalet, B., and Rojas, E., Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell.J. Physiol., 288, 575–588 (1979).

  8. Burgoyne, R. D., Mechanism of secretion from adrenal chromaffin cells.Biochem. Biophys. Acta., 779, 201–216 (1984).

  9. Cena, V., Nicolas, G. R., Sanchez-Garcia, R., Kirpekar, S. M., and Garcia, A. G., Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release.Neuroscience, 10, 1455–1462 (1983).

  10. Douglas, W. W., Secretomotor control of adrenal medullary secretion: synaptic, membrane and ionic events in stimulus-secretion coupling. InHandbook of physiology, Endocrinology, vol. 6, ed. Blashko, H., Sayers, G. and Smith, A.D. pp. 367–388, Washington DC, American Physiological Society, (1975).

  11. Ducouret, P., The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp.Br. J. Pharmacol., 57, 163–184 (1976).

  12. Findlay, I., Dunne, M. J., Ullrich, S., Wollheim, C. B., and Petersen, O. H., Quinine inhibits Ca2+-indenfendent K+ channels whereas tetraethylamonium inhibits Ca2+-activated K+ channels in insulin-secreting cells.FEBS. Lett, 185, 4–8 (1985).

  13. Garcia, A. G., Sala, R., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels.Nature, 309, 69–71 (1984).

  14. Glavinovic, M. I., Dagher, R and Trifaro, J. M., Effect of quinine on release of noradrenaline and on Ca2+-activated K+channels in chromaffin cell.Physiologist., 28, 329 (1985).

  15. Glavinovic, M. I. and Trifaro, J. M., Quinine blockade of currents through Ca2+- activated K+ channels in bovine chromaffin cells.J. Physiol., 399, 139–152 (1988).

  16. Goeger, D. E. and Riley, R. T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability.Biochem. Pharmacol., 38, 3995–4003 (1989).

  17. Hammer, R., and Giachetti, A., Muscarinic receptor subtypes:M1 and M2 biochemical and functional characterization.Life Sci., 31, 2992–2998 (1982).

  18. Heldman, E., Levine, M., Rabeh, L., and Pollard, H. B., Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium.J. Biol. Chem., 264, 7914–7920 (1989).

  19. Hermann, A., and Gorman, A. L. F., Action of quinidine on ionic currents of molluscan pacemaker neurons.J. Gen. Physiol., 83, 919–940 (1984).

  20. Hermsmeyer, R. K., Pinacidil actions on ion channels in vascular muscle.J. Cardiovasc. Pharmacol., 12(Suppl. 2), S17-S22 (1988).

  21. Ilno, M., Calcium-induced calcium release mechanism in guinea pig taenia caeci.J. Gen. Physiol., 94, 363–383 (1989).

  22. Ladona, M. G., Aunis, D., Gandia, A. G., and Garcia, A. G., Dihydropyridine modulation of the chromaffin cell secretory response.J. Neurochem., 48, 483–490 (1987).

  23. Lew, V. L. and Ferreira, H. G., Calcium transport and the properties of a Calcium-activated potassium channel in red cell membranes.Curr. Top Membr. Transp., 10, 217–277 (1978).

  24. Lim, D. Y. and Hwang, D. H., Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland.Korean J. Pharmacol., 27(1), 53–67 (1991).

  25. Lim, D. Y., Kim, C. D., and Ahn, K. W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands.Arch. Pharm. Res., 15(2), 115–125 (1992).

  26. Lim, D.Y., Park, G.H., and Park, S.H., Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depoialrization.J. Auton. Pharmacol., 20, 123–132 (2000).

  27. Masuda, Y., Yoshizumi, M., Ishimura, Y., Katoh, I., and Oka, M., Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells.Biochem. Pharmacol., 47(10), 1751–1758 (1994).

  28. Neel, A. and Lingle, C. J., Two components of calcium-activated potassium current in rat adrenal chromaffin cells.J. Physiol., 453, 97–131 (1992).

  29. Oka, M., Isosaki, M., and Yanagihara, N., Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In:Catecholamines: Basic and Clinical frontiers (Eds. Usdin E., Kopin IJ and Brachas J), Pergamon Press, Oxford, pp. 70–72, (1979).

  30. Perez-Vizcaino, E., Casis, O., Rodriguez, R., and Comez, L. A., Garcia Rafanell, J. and Tamargo, J., Effect of the novel potassium channel opener, UR-8225, on contractile responses in rat isolated smooth muscle.Br. J. Pharmacol., 110, 1165–1171 (1993).

  31. Plant, T. D. and Standen, N. B., Calcium current inactivation in identified neurones of Helix asoersa.J. Physiol., 321, 273–285 (1976).

  32. Quast, U. and Cook, N. S., Moving together: K+ channel openers and ATP-sensitive K+ channels.Trends. Pharmacol. Sci., 10, 431–435 (1979).

  33. Ribalet, B. and Beigleman, R. M., Calcium action potentials and potassium permeability activation in pancreatic beta-cells.Am. J. Physiol., 239, C124-C133 (1980).

  34. Rosario, L. M., Atwater, I. and Rojas, E., Membrance potential measurements in islets of Langerhans from ob/ob obese mice suggest an alteration in [Ca2+]- activated K+ permeability.Quart J. Exper. Physiol., 70, 137–150 (1985).

  35. Seidler, N. W., Jona, I., Vegh, N., and Martonosi, A., Cyclo-piazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasimc reticulum.J. Biol. Chem., 264, 17816–17823 (1989).

  36. Soares-da-Silva, R. and Fernandes, M. H., Inhibition by the putative potassium channel opener pinacidil of the electrically-evoked release of endogenous dopamine and noradrenaline in the rat vas deferens.Naunyn - Schmiedeberg’s Arch. Pharmacol., 342, 415–421 (1990).

  37. Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2+-pump, reduces Ca2+-dependent K+currents in guinea-pig smooth muscle cells.Br. J. Pharmacol., 107, 134–140 (1992).

  38. Tallarida, R. J. and Murray, R. B., Manual of pharmacologic calculation with computer programs.2nd Ed New York Speringer-Verlag, pp. 132, (1987).

  39. Tang, R., Novas, M. L., Glavinovic, M. I., and Trifaro, J. M., Effect of quinine on the release of catecholamines from bovine cultured chromaffin cells.Br. J. Pharmacol., 99, 548–552 (1990).

  40. Terbush, D. R. and Holz, R. W., Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways.J. Neurochem., 58, 680–687 (1992).

  41. Trifaro, J. M., Common mechanisms of hormone secretion.Ann. Rev. Pharmacol. Toxicol., 17, 27–47 (1977).

  42. Trifaro, J. M., The cultured chromaffin cell: a model for the study of biology and pharmacology of paraneurones.Trends. Pharmacol. Sci., 3, 389–392 (1982).

  43. Uceda, G., Artalejo, A. R., Lopez, M. G., Abad, E., Neher, E., and Garcia, A. G., Ca2+-activated K+ channels modulate muscarinic secretion in cat chromaffin cells.J. Physiol., 454, 213–230 (1992).

  44. Uyama, Y., Imaizumi, Y., and Watanabe, M., Effects of cyclopiazonic acid, a novel Ca2+-ATPase inhibitor on contractile responses in skinned ileal smooth muscle.Br. J. Pharmacol., 106, 208–214 (1992).

  45. Wakade, A. R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland,J. Physiol., 313, 463–480 (1981).

  46. Weston, A. H., Southerton, J. S., Bray, K. M., Newgreen, D. T., and Taylor, S. G., The mode of action of pinacidil and its analogs P1060 and P1368: Results of studies in rat blood vessels.J. Cardiovasc. Pharmacol., 12 (Suppl), S10-S16 (1988).

Download references

Author information

Correspondence to Suk-Jung Jang or Jong-In Kim or Dong-Yoon Lim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, S., Kim, J. & Lim, D. Influence of quinine on catecholamine release evoked by cholinergic stimulation and membrane depolarization from the rat adrenal gland. Arch Pharm Res 24, 240 (2001). https://doi.org/10.1007/BF02978265

Download citation

Key words

  • Quinine
  • Adrenal gland
  • Catecholamine secretion
  • Potassium channels