Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Protein drug oral delivery: The recent progress

Abstract

Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

This is a preview of subscription content, log in to check access.

References

  1. Allémann, E., Gurney, R., and Doelker, E., Drug loaded nanopaticles-preparation methods and drug targeting issues.Eur. J. Pharm. Biopharm., 39, 173–191 (1993).

  2. Allen, A., Cuncliffe, W. J., Peerson, J. P., Sellers, L. A., and Ward, R., Studies on gastrointestinal mucus.Scan. J. Gastroenterol., 19 (suppl), 101–113 (1984).

  3. Alur, H., Beal, J.D., Pather, S. I., Mitra, A. K., and Johnston, T. P., Evaluation of a novel, natural oligosaccharide gum as a sustained-release and mucoadhesive component of calcitonin buccal tablets.J. Pharm. Sci., 88, 1313–1319 (1999).

  4. Anderson, P. M., Hanson, D. C., Hasz, D. E., Halet, M. R., Blazer, B. R., and Ochoa, A. C., Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and Interferon-gamma.Cytokine, 6, 92–101, (1994).

  5. Arimori, K. and Nakano, M., Drug exsorption from blood into the gastrointestinal tract.Pharm. Res., 15, 371–376 (1998).

  6. Babiuk, S., Baca-Estrada, M., Babiuk, L. A., Ewen, C., and Foldvari, M., Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery.J. Control Release., 66, 199–214 (2000).

  7. Bai, J. P., Chang, L. L., and Guo, J. H., Targeting of peptide and protein drugs to specific sites in the oral route.Crit. Rev. Ther. Drug Carrier Syst., 12, 339–371 (1995).

  8. Baluom, M., Friedman, D. I., and Rubinstein, A., Absorption enhancement of calcitonin in the rat intestine by carbopolcontaining submicron emulsions.Int. J. Pharm., 154, 235–243 (1997).

  9. Bell, D. S. and Ovalle, F., Use of soy protein supplement and resultant need for increased dose of levothyroxine.Endocr. Pract, 7, 193–194 (2001).

  10. Beierle, I., Meibohm, B., and Derendorf, H., Gender differences in pharmacokinetics and pharmacodynamics.Int. J. Clin. Pharmacol. Then, 37, 529- (1999).

  11. Bernkop-Schnurch, A., Chitosan and its derivatives: potential excipients for peroral peptide delivery systems.Int. J. Pharm., 194, 1–13 (2000).

  12. Bernkop-Schnurch, A., Schwarz, G. H., and Kratzel, M., Modified mucoadhesive polymers for the peroral administration of mainly elastase degradable therapeutic (poly)peptides.J. Cont. Res., 47, 113–121, (1997a).

  13. Bernkop-Schnurch, A., Bratengeyer, I., and Valenta, C., Development and in vitro evaluation of a drug delivery system protecting from trypsinic degradation.Int. J. Pharm., 157, 17–25 (1997b).

  14. Bickel, U., Yoshikawa, T., and Pardridge, W. M., Delivery of peptides and proteins through the blood-brain barrier.Adv. Drug Deliv. Rev., 46, 247–279 (2001).

  15. Burke, C. J., Hsu, T. A., and Volkin, D. B., Formulation, stability, and delivery of live attenuated vaccines for human use.Crit. Rev. Ther. Drug Carrier Syst., 16, 1–83 (1999).

  16. Carreno-Gomez, B., Woodley, J. F., and Florence, A. T., Studies on the uptake of tomato lectin nanoparticles in everted gut sacs.Int. J. Pharm., 183, 7–11 (1999).

  17. Cleland, J. L., Daugherty, A., and Mrsny, R., Emerging protein delivery methods.Curr. Opin Biotechnol., 12, 212–219 (2001).

  18. Corbett, J., and Ross, K., Neoral: the new cyclosporine.ANNA. J., 25, 71–72 (1998).

  19. Cornell, R. and Padykula, H. A., A cytological study of intestinal absorption in the suckling rat.Am. J. Anal., 125, 291–316 (1969).

  20. DeVane, C. L. and Gill, H. S., Clinical pharmacokinetics of fluvoxamine: applications to dosage regimen design.J. Clin. Psychiatry., 58, 7–14 (1997).

  21. DiBiase, M. D., and Morrel, E. M., Oral delivery of microencapsulated proteins.Pharm. Biotechnol., 10, 255–288 (1997).

  22. Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., and Tice, T. R., Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microsphere target the Peyers patches.J. Control. Rel., 11, 205–214 (1990).

  23. Fasano, A., Novel approaches for oral delivery of macromolecules.J. Pharm. Sci., 87, 1351–1356 (1998a).

  24. Fasano, A., Innovative strategies for the oral delivery of drugs and peptides.Trends Biotechnol., 16, 152–157 (1998b).

  25. Fasano, A., Modulation of intestinal permeability: an innovative method of oral drug delivery for the treatment of inherited and acquired human diseases.Mol. Genet. Metab., 64, 12–18 (1998c).

  26. Fix, J. A., Oral controlled release technology for peptides: status and future prospects.Pharm. Res., 13, 1760–1764 (1996).

  27. Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I., Expression of a multidrug-resistance gene in human tumors and tissues.Proc. Natl. Acad. Sci. USA, 84, 265–269 (1987).

  28. Foradori, A., Mezzano, S., Videla, O., Pefaur, J., and Elberg, A., Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants.Transplant Proa, 30, 1685–1687 (1998).

  29. Fricker, G. and Drewe, J., Current concepts in intestinal peptide absorption.J. Pept. Sci., 2, 195–211 (1996).

  30. Fromm, M. F., P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs.Int. J. Clin. Pharmacol. Ther., 38, 69–74 (2000).

  31. Fuiji, S., Yakohama, T., Ikegaya, K., Sato, F., and Yohoo, N., Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs.J. Control. Rel., 13, 213–223 (1991).

  32. Garrido, A. B. Jr., Freeman, H.J., and Kim, Y.S., Amino acid and peptide absorption in bypassed jejunum following jejunoileal bypass in rats.Dig. Di. Sci., 26, 107–112, (1981).

  33. Gonnella, P. A., Siminoski, K., Murphy, R. A., and Neutra, M. R., Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum.J. Clin. Invst., 80, 22–32 (1987).

  34. Gonnella, P. A. and Neutra, M. R., Membrane-bound and fluidphase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum.J. Cell Biol., 99, 909–917 (1984).

  35. Gregg, C. R., Drug interactions and anti-infective therapies.Am. J. Med., 106, 227–237 (1999).

  36. Grevel, J., Nuesch, E., Abisch, E., and Kutz, K., Pharmacokinetics of oral cyclosporin A (Sandimmun) in healthy subjects.Eur. J. Clin. Pharmacol., 31, 211–216 (1986).

  37. Gutniak, M. K., Larsson, H., Heiber, S. J., Juneskans, O. T., Hoist, J. J., and Ahren, B. Potential therapeutic levels of glucagon-like peptide I achieved in humans by a buccal tablet.Diabetes Care, 19, 843–848 (1996).

  38. Habberfield, A., Jensen-Pippo, K., Ralph, L., Westwood, S., and Russel-Jones, G. J., Vitamin Bb12-mediated uptake of recombinant therapeutic proteins from the gut.Int. J. Pharm., 145, 1–8 (1996).

  39. Harris, R. Z., Benet, L. Z., and Schwartz, J. B., Gender effects in pharmacokinetics and pharmacodynamics.Drugs, 50, 222–239 (1995).

  40. Jani, P., Halbert, G. W., Langridge, J., and Florence, T., The uptake and translocation of latex nanospheres and microspheres after oral administration to rats.J. Pharm. Pharmacol., 41, 809–812 (1989).

  41. Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J. X., and Kissel, T., Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake.Eur. J. Pharm. Biopharm., 50, 147–160 (2000).

  42. Kararli, T. T., Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals.Biopharm. Drug Dispos., 16, 351–380 (1995).

  43. Keljo, D. J., Hamilton, J. R., Quantitative determination of macromolecular transport rate across intestinal Peyers patches.Am. J. Physiol., 244, G637-G644 (1983).

  44. Kennedy, A. R., The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent.Am. J. Clin. Nutr., 68, 1406S-1412S (1998).

  45. Kohler, E., Duberow, D. M., Drew, J., Ribes, G., Loubatieres, M. M. M., Mazer, N., Gyr, K., and Berlinger, C., Absorption of an aqueous solution of a new synthetic somatostatin analogue administered to man by gavage.Eur. J. Clin. Pharmacol., 33, 167–171 (1987).

  46. Kompella, U. B. and Lee, V. H., Delivery systems for penetration enhancement of peptide and protein drugs: design considerations.Adv. Drug Deliv. Rev., 46, 211–245 (2001).

  47. Kratzel, M., Heissbock, R., and Bernkop-Schnurch, A., Auxiliary agents for the peroral administration of peptide and protein drugs: synthesis and evaluation of novel pepstatin analogues.J. Med. Chem., 41, 2339–2344 (1998).

  48. Kreuter, J., Peroral administration of nanoparticles.Adv. Drug Deliv. Rev., 7, 71–86 (1991).

  49. Kurosaki, Y. and Kimura, T., Regional variation in oral mucosal drug permeability.Crit. Rev. Ther. Drug Carrier Syst., 17, 467–508 (2000).

  50. Larkins, B. A., Pedersen, K., Marks, M.D., and Wilson, D. R., The zein proteins of maize endosperm.Trends Biochem. Sci., July, 306–308 (1984).

  51. Lasic, D.D. and Papahadjopoulos, D., Liposomes revisited.Science, 267, 1275–1276 (1995).

  52. Lee, V. H. L., Protease inhibitors and penetration enhancers as approaches to modify peptide absorption.J. Control. Rel., 13, 213–223 (1991).

  53. Lee, V. H. L., Membrane transporters.Eur. Pharm. Sci., 11, S41–50 (2000).

  54. Lee, H.J. and Amidon, G. L., The effect of enzyme inhibitor and absorption site following [D-ala2, D-leu5]enkephalin oral administration in rats.Biopharm. Drug Dispos. 23, 131–141 (2002).

  55. Lee, H. J. and Lee, M. G. Controlling absorption site, metabolism, and membrane permeability in the intestine to develop strategies for protein drug oral delivery. Abstract submitted for the 16th annual meeting of the AAPS to be held in Toronto, Canada in November, 2002.

  56. Lee, H.J., Riley, G., Johnson, O., Cleland, J. L., Kim, N., Charnis, M., Baily, L., Duenas, E., Shahzamani, A., Marian, M., Jones, A.J.S., and Putney, S. D. In vivo characterization of sustained-release formulations of human growth hormone,J. Pharmacol. Exp. Then., 281, 1431–1439 (1997).

  57. Lehr, C. M., Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract.Crit. Rev. Ther. Drug Carrier Syst., 11, 119–160 (1994).

  58. Lehr, C. M., Bouwstra, J. A., Tukker, J. J., and Junginger, H. E., Intestinal transit of bioadhesive microspheres in an in situ loop in the rat. A comparative study with polymers and blends based on poly(acrylic acid).J. Control. Rel., 13, 51–62 (1990).

  59. Leone-Bay, A., Ho, K.K., Agarwal, R., Baughman, R. A., Chaudhary, K., De Morin, F., Genoble, L., Mclnnes, C., Lercara, C., Milstein, S., OToole, D., Sarubbi, D., Variano, B., and Paton, D. R. 4-[4-(2-hydroxybenzoyl)aminophenyl]- butyric acid as a novel oral delivery agent for recombinant human growth hormone.J. Med. Chem., 39, 2571–2578 (1996).

  60. Leone-Bay, A., Paton, D. R., and Weidner, J. J., The development of delivery agents that facilitate the oral absortion of macromolecular drugs.Med. Res. Rev., 20, 169–186 (2000).

  61. Lipka, E., Crison, J., and Amidon, G. L., Transmembrane transport of peptide type compounds: prospects for oral delivery.J. Control. Rel., 39, 121–129 (1996).

  62. Lundin, S. and Vilhardt, H., Absorption of 1-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits.tActa Endocrinol., 112, 457–460 (1986).

  63. Macfarlane, G. T., Cummings, J. H., Macfarlane, S., and Gibson, G. R., Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3- stage continuous culture system.J. App. Bad., 67, 520–527 (1989).

  64. Mannino, R. J. and Gould-Fogerite, S., Lipid matrix-based vaccines for mucosal and systemic immunization.Pharm. Biotechnol., 6, 363–387 (1995).

  65. Merkle, H. P., New aspects of pharmaceutical dosage forms for controlled drug delivery of peptide and proteins.Eur. J. Pharm. Sci., 2, 19–21 (1994).

  66. Mestecky, J., Michalek, S. M., Moldoveanu, Z., and Russell, M. W., Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans.Behring. Inst. Mitt., 98, 33–43 (1997).

  67. Miller, D. B., and Spence, J. D., Clinical pharmacokinetics of fibric acid derivatives (fibrates).Clin. Pharmacokinet., 34, 155–162 (1998).

  68. Nagai, T., Drug delivery systems by controlled release.Yakugaku Zasshi, 108, 613–624 (1988).

  69. Nakane, S., Kakumoto, M., Yukimatsu, K. and Chien, Y. W., Oramucosal delivery of LHRH: pharmacokinetic studies of controlled and enhanced transmucosal permeation.Pharm. Dev. Technol., 1, 251–259 (1996).

  70. New, R. R. C., Guard, P. W., Littlewood, G. M., Sandbank, B. M., and Flynn, M. J., Administration of calcitonin to humans: comparison of intra-nasal and oral routes. Third European Symposium on Controlled Release Drug Delivery, Noordwijk aan Zee, The Netherlands, April 6–8 (1994).

  71. Oh, D. M., Han, H. K., and Amidon, G. L., Drug transport and targeting. Intestinal transport.Pharm. Biotechnol., 12, 59–88 (1999).

  72. OHagan, D.T., Microparticles as oral vaccines. In Novel delivery systems for oral vaccines, (D. T OHagan, ed.), CRC Press, Boca Raton, FL; CRC Press, pp. 188–197, 1994.

  73. Owen, R. L., and Bhalla, D. K., Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyers patch M-cells.Am. J. Anal., 168, 199–212 (1983).

  74. Park, K. and Robinson, J. R., Bioadhesive polymers as platforms for oral-controlled drug-delivery: method to study bioadhesion.Int. J. Pharm., 19, 107–127 (1984).

  75. Paine, M. F., Khalight, M., Fisher, J. M., Shen, D. D., Kunze, K. L., Marsh, C. L, Perkins, J. D., Thummel, K. E. Characterization of intestinal and intraintestinal variations in human CYP3A-dependent metabolism.J. Pharmacol. Exp. Ther., 283, 1552–1562 (1997).

  76. Picsitelli, S. C., Reiss, W. G., Figg, W. D., and Petros, W. P., Pharmacokinetics studies with recombination cytokines. Scinetific issues and practical considerations.Clin. Pharmacokinet., 32, 368–381 (1997).

  77. Quintanar-Guerrero, D., Allémann, E., Fessi, H., and Doelker, E., Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers.Drug Dev. Ind. Pharm., 24, 1113–1128 (1998).

  78. Ray, R., Novak, M., Duncan, J. D., Matsuoka, Y., and Compans, R. W., Microencapsulated human parainfluenza virus induces a protective immune response.J. Infect. Dis. 167, 752–755 (1993).

  79. Rubinstein, A., Approaches and opportunities in colon-specific drug delivery.Crit. Rev. Ther. Drug Carrier Syst., 12, 101–149 (1995).

  80. Russell-Jones, G. J., Use of vitamin B12 conjugates to deliver protein drugs by the oral route.Crit. Rev. Ther. Drug Carrier Syst., 15, 557–586 (1998).

  81. Russell-Jones, G. J., Arthur, L., and Walker, H., Vitamin B12-mediated transport of nanoparticles across Caco-2 cells.Int. J. Pharm. 179, 247–255 (1999).

  82. Saffran, M., Kumar, G.S., Savariar, C., Burnham, J. C., William, F., and Neckers, D. C., A new approach to the oral administration of insulin and other peptide drugs.Science. 233, 1081–1084 (1986).

  83. Sakuma, S., Hayashi, M., and Akashi, M., Design of nanoparticles composed of graft copolymers for oral peptide delivery.Adv. Drug Deliv. Rev., 47, 21–37 (2001).

  84. Samanen, J., Wilson, G., Smith, P. L., Lee, C. P., Bondinell, W., Ku, T., Rhodes, G., and Nichols, A., Chemical approaches to improve the oral bioavailability of peptidergic molecules.J. Pharm. Pharmacol., 48, 119–135 (1996).

  85. Schellens, J. H., Malingre, M. M., Kruijtzer, C. M., Bardelmeijer, H.A., Van Tellingen, O., Schinkel, A. H., and Beijnen, J. H., Modulation of oral bioavailability of anticancer drugs: from mouse to man.Eur. J. Pharm. Sci., 12, 103–110 (2000).

  86. Scrips Report, Biopharmaceuticals: a new era of discovery in the biotechnology revolution. PJB Publications Ltd., Surray, UK, (2001)

  87. Senel, S., Kremer, M., Nagy, K., and Squier, C., Delivery of bioactive peptides and proteins across oral (buccal) mucosa.Curr. Pharm. Biotechnol., 2, 175–186 (2001).

  88. Spahn-Langguth, H., and Langguth, P., Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol.Eur. J. Pharm. Sci., 12, 361–367 (2001).

  89. Stoll, B. R., Leipold, H. R., Milstein, S., and Edwards, D. A., A mechanistic analysis of carrier-mediated oral delivery of protein therapeutics.J. Control. Rel., 64, 217–228 (2000).

  90. Su, S.-F., Amidon, G. L., and Lee, H. J., The intestinal metabolism and absorption of cholecystokinin analogs in rats.Biochem. Biophys. Res. Commun. 292, 632–638. (2002).

  91. Suzuki, H., and Sugiyama, Y., Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine.Eur. J. Pharm. Sci., 12, 3–12 (2000).

  92. Takeuchi, H., Yamamoto, H., and Kawashima, Y., Mucoadhesive nanoparticulate systems for peptide drug delivery.Adv. Drug Deliv. Rev., 47, 39–54 (2001).

  93. Tanaka, E., Gender-related differences in pharmacokinetics and their clinical significance.J. Ciln. Pharm. Ther., 24, 339–346 (1999).

  94. Thurmann, P. A. and Hompesch, B. C., Influence of gender on the pharmacokinetics and pharmacodynamics of drugs.Int. J. Clin. Pharmacol. Ther., 36, 586–590 (1998).

  95. Thomas, N. W., Jenkins, P. G., Howard, K. A., Smith, M. W., Lavelle, E. C., Holland, J., and Davis, S. S., Particle uptake and translocation across epithelial membranes.J. Anat., 189, 487–490 (1996).

  96. Torres-Lugo, M. and Peppas, N. A., Transmucosal delivery systems for calcitonin: a review.Biomaterials, 21, 1191–1196 (2000).

  97. Tsuji, A. and Tamai, I., Carrier-mediated intestinal transport of drugs.Pharm. Res., 13, 963–977 (1996).

  98. Van Asperen, J., Van Tellingen, O., and Beijnen, J. H., The pharmacological role of P-glycoprotein in the intestinal epithelium.Pharmacol. Res., 37, 429–435 (1998).

  99. Verbeeck, C. K. and Horsmans, Y., Effect of hepatic insufficiency on pharmacokinetics and drug dosing.Pharm. World Sci., 20, 183–192 (1998).

  100. Vaes, G., Digestive capacity of lysosomes, In Hers, H. G. and Van Hoof, F. (Eds.). Lysosomes and Storage Diseases, Academic Press, London, pp. 43–59, (1973).

  101. Vyas, S. P., Venugopalan, P., Sood, A., and Mysore, N., Some approaches to improve bioavailability of peptides and proteins through oral and other mucosal routes.Pharmazie., 52, 339–345 (1997).

  102. Wacher, V. J., Salphati, L., and Benet, L. Z., Active secretion and enterocytic drug metabolism barriers to drug.Adv. Drug Deliv. Rev., 46, 89–102 (2001).

  103. Wacher, V. J., Silverman, J. A., Zhang, Y., and Benet, L. Z., Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J.Pharm. Sci., 87, 1322–1330 (1998).

  104. Walker, G. R, Langoth, N., and Bernkop-Schnurch, A., Peptidase activity on the surface of the porcine buccal mucosa.Int. J. Pharm., 21, 233, 141–147 (2002).

  105. Wasan, K. M., Formulation and physiological and biopharmaceutical issues in the development of oral lipidbased drug delivery systems.Drug Dev. Ind. Pharm., 27, 267–276 (2001).

  106. Watts, T. L., and Fasano, A., Modulation of intestinal permeability: a novel and innovative approach for the oral delivery of drugs, macromolecules and antigens.Biotechnol. Genet. Eng. Rev., 17, 433–453 (2000).

  107. Woodley, J. F., Peptidase enzymes of G.I. tract; barriers to peptide delivery, but potential for controlled release.Proc. Int. Symp. Control Rel. Bioact. Mater., 19, 2–5, (1992).

  108. Woodley, J. F., Enzymatic barriers for Gl peptide and protein delivery.Crit. Rev. Ther. Drug Carrier Syst., 11, 61–95 (1994).

  109. Yamamato, A., Taniguchi, T., Rikyuu, K., Tsuji, T., Fujita, T., Murakami, M., and Muranishi, J., Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats.Pharm. Res., 11, 1496–1500 (1994).

  110. Yang, C. Y., Dantzig, A. H., and Pidgeon, C., Intestinal peptide transport systems and oral drug availability.Pharm. Res., 16, 1331–1343 (1999).

  111. Ye, Q., Asherman, J., Stevenson, M., Brownson, E., and Katre, N. V., DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs.J. Control. Rel., 64, 155–166 (2000).

Download references

Author information

Correspondence to Hye J. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, H.J. Protein drug oral delivery: The recent progress. Arch Pharm Res 25, 572 (2002). https://doi.org/10.1007/BF02976925

Download citation

Key words

  • Protein oral delivery
  • Absorption site
  • Metabolism
  • Permeability
  • Transporters
  • Solubility
  • Molecular size
  • Innovative pharmaceutical approaches
  • Microencapsulation
  • Nanoparticles
  • Mucoadhesion
  • Transport vectors