Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanosensitive modulation of receptor-mediated crossbridge activation and cytoskeletal organization in airway smooth muscle

  • 34 Accesses

  • 6 Citations

Abstract

Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for controlling airway resistance in airway diseases.

This is a preview of subscription content, log in to check access.

References

  1. Adler, K.B., Krill, J., Alberghini, T.V. and Evans, J.N., Effect of cytochalasin D on smooth muscle contraction.Cell Motil. Cytoskeleton, 3, 545–551 (1983).

  2. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K., Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).J. Biol. Chem. 271, 20246–20249 (1996).

  3. Amoako, D., Qian, Y., Kwan, C. Y. and Bourreau, J. P., Probing excitation-contraction coupling in trachealis smooth muscle with the mycotoxin cyclopiazonic acid.Clin. Exp. Pharmacol. Physiol., 23, 733–737 (1996).

  4. An, S. S. and Hai, C.-M., Mechanical strain modulates maximal phosphatidylinositol turnover in airway smooth muscle.Am. J. Physiol., 277 (Lung Cell. Mol. Physiol. 21), L968-L974 (1999).

  5. An, S. S. and Hai, C.-M., Mechanical signals and mechanosensitive modulation of intracellular [Ca2+] in smooth muscle.Am. J. Physiol., Cell Physiol. 279, C1375-C1384 (2000).

  6. Bigay, J., Deterre, P., Pfister, C. and Chabre, M., Fluoroaluminates activate transducin-GDP by mimicking the g-phosphate of GTP in its binding site.FEBS Lett., 191, 181–185 (1985).

  7. Bond, M. and Somlyo, A. V. Dense bodies and actin polarity in vertebrate smooth muscle.J. Cell Biol., 95, 403–413 (1982).

  8. Bourguignon, L. Y. W., Iida, N. and Jin, H., The involvement of the cytoskeleton in regulating IP3 receptor-mediated internal Ca2+ release in human blood platelets.Cell Biol. Int., 17, 751–758 (1993).

  9. Bourreau, J. P., Kwan, C. Y., and Daniel, E. E., Distinct pathways to refill ACh-sensitive internal Ca2+ stores in canine airway smooth muscle.Am. J. Physiol., 265, C28-C35 (1993).

  10. Bremerich, D. H., Warner, D. O., Lorenz, R. R., Shumway, R. and Jones, K. A., Role of protein kinase C in calcium sensitization during muscarinic stimulation in airway smooth muscle.Am. J. Physiol., 273 (Lung Cell. Mol. Physiol. 17), L775–L781 (1997).

  11. Burridge, K. and Chrzanowska-Wodnicka, M., Focal adhesions, contractility, and signaling.Annu. Rev. Cell Dev. Biol., 12, 463–518 (1996).

  12. Burridge, K. and Fath, K., Focal contacts, transmembrane links between the extracellular matrix and the cytoskeleton.Bioessays, 10, 104–108 (1989).

  13. Burridge, K. and Mangeat, P., An interaction between vinculin and talin.Nature, 308, 744–746 (1984).

  14. Cande, W. Z., Tooth, P. J. and Kendrick-Jones, J., Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells.J. Cell Biol., 97, 1062–1071 (1983).

  15. Cantiello, H. F., Stwo, J. L., Prat, A. G. and Ausiello, D. A., Actin filaments regulate epithelial Na+ channel activity.Am. J. Physiol., 261 (Cell Physiol. 30), C882-C888 (1991).

  16. Chan, W.-L., Silberstein, J. and Hai, C.-M., Mechanical strain memory in airway smooth muscle.Am. J. Physiol., 278, C895-C904 (2000).

  17. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E., Geometric control of cell life and death.Science, 276, 1425–1428 (1997).

  18. Chen, H., Bernstein, B. W., and Bamburg, J. R., Regulating actin-filament dynamics in vivo.Trends in Biochem. Sc., 25, 19–23 (2000).

  19. Chicurel, M. E., Chen, C. S. and Ingber, D. E., Cellular control lies in the balance of forces.Curr. Opin Cell Biol., 10, 232–239 (1998).

  20. Chilvers, E. R., Barnes, P. J., and Nahorski, S. R., Characterization of agonist-stimulated incorporation of myo-[3H] inositol into inositol phospholipids and [3H]inositol phosphate formation in tracheal smooth muscle.Biochem. J., 262, 739–746 (1989).

  21. Chilvers, E. R. and Nahorski, S. R., Phosphoinositide metabolism in airway smooth muscle.Am. Rev. Respir. Dis., 141, S137-S140 (1990).

  22. Clark, E. A. and Brugge, J. S., Integrins and signal transduction pathways: the road taken.Science, 268, 233 (1995).

  23. Coburn, R. F., Labelle, E. F., Griffiths, T. II, and Baron, C. B., Smooth muscle sarcolemma-associated phospholipase C-beta 2: agonist-evoked translocation.J. Cell. Physiol., 171, 271–283 (1997).

  24. Cockcroft, S. and Thomas, G. M., Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors.Biochem. J., 288, 1–14 (1992).

  25. Cooper, J. A. Effects of cytochalasin and phalloidin on actin.J. Cell Biol., 105, 1473–1478 (1987).

  26. Cooper, J. A. and Schafer, D. A., Control of actin assembly and dissembly at filament ends.Curr. Opin. Cell Biol., 12, 97–103 (2000).

  27. Craig, R. and Megerman, J., Assembly of smooth muscle myosin into side-polar filaments.J. Cell Biol., 75, 990–996 (1977).

  28. Craig, R., R. Smith, and Kendrick-Jones, J., Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules.Nature, 302, 436–439 (1983).

  29. Craig, S. W. and Johnson, R. P., Assembly of focal adhesions: progress, paradigms, and portents.Current Opinion in Cell Biol., 8, 74–85 (1996).

  30. Davis, E. C. and Shivers, R. R., Ordered distribution of membrane-associated dense plaques in intact quail gizzard smooth muscle cells revealed by freeze-fracture following treatment with cholesterol probes.Anat. Rec., 232, 385–392 (1992).

  31. Davis, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev., 75, 519–560 (1995).

  32. Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., Myosin phosphorylation and the crossbridge cycling in arterial smooth muscle.Science, 211, 495–497 (1981).

  33. Draeger, A., Amos, W. B., Ikebe, M. and Small, J. V., The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements.J. Cell Biol., 111, 2463–2473 (1990).

  34. Draeger, A., Stelzer, E. H., Herzog, M. and Small, J. V., Unique geometry of actin-membrane anchorage sites in avian gizzard smooth muscle cells.J. Cell Sci., 94, 703–711 (1989).

  35. Fay, F. S., Fujiwara, K., Rees, D. D. and Fogarty, K. E., Distribution of alpha-actinin in single isolated smooth muscle cells.J. Cell Biol., 96, 783–795 (1983).

  36. Feuilloley, M., Contesse, V., Lefebvre, H., Delarue, C. and Vaudry, H., Effects of selective disruption of cytoskeletal elements on steroid secretion by human adrenocortical slices.Am. J. Physiol., 266 (Endocrinol. Metab. 29), E202-E210 (1994).

  37. Feuilloley, M., Desrues, L. and Vaudry, H., Effect of cytochalasin-B on the metabolism of polyphosphoinositides in adrenocortical cells.Endocrinology, 133, 2319–2326 (1993).

  38. Flinn, H. M. and Ridley, A. J., Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin.J. Cell Sc., 109, 1133–1141 (1996).

  39. Fredberg, J. J., Inouye, D. S., Mijailovich, S. M. and Butler, J. P., Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm.Am. J. Respir. Crit. Care Med., 159, 959–967 (1999).

  40. Fredberg, J. J., Inouye, D., Miller, B., Nathan, M., Jafari, S., Raboudi, S. H., Butler, J. P. and Shore, S. A., Airway smooth muscle, tidal stretches, and dynamically determined contractile states.Am. J. Respir. Crit. Care Med., 156, 1752–1759 (1997).

  41. Gerthoffer, W.T. Regulation of the contractile element of airway smooth muscle.Am. J. Physiol., 261, L15-L28 (1991).

  42. Gillis, J. M., Cao, M. L. and Godfraind-De Becker, A., Density of myosin filaments in the rat anococcygeus muscle, at rest and in contraction. II.J. Muscle Res. Cell Motil., 9, 18–29 (1988).

  43. Gilmore, A. P. and Burridge, K., Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4,5-bisphosphate.Nature, 381, 531–535 (1996).

  44. Gilmore, A. P. and Burridge, K., Molecular mechanisms for focal adhesion assembly through regulation of protein-protein interactions.Structure, 4, 647–651 (1996).

  45. Grandordy, B. M., Cuss, F. M., Sampson, A. S., Palmer, J. B. and Barnes, P. J., Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: relationship to contraction and muscarinic receptor occupancy.J. Pharmacol. Exp. Ther., 238, 273–279 (1986).

  46. Guan, J. L., Role of focal adhesion kinase in integrin signaling.Int. J. Biochem. Cell Biol., 29, 1085–1096 (1997).

  47. Gunst, S.J., Contractile force of canine airway smooth muscle during cyclical length changes.J. Appl. Physiol., 55, 759–769 (1983).

  48. Gunst, S. J., Effect of length history on contractile behavior of canine tracheal smooth muscle.Am. J. Physiol., 250 (Cell Physiol. 19), C146-C154 (1986).

  49. Gunst, S. J., Effects of muscle length and load on intracellular Ca2+ in tracheal smooth muscle.Am. J. Physiol., 256 (Cell Physiol. 25), C807-C812 (1989).

  50. Gunst, S. J., Applicability of the sliding filament/cross-bridge paradigm to smooth muscle.Rev. Physiol. Biochem. Pharmacol., 134, 7–61 (1999).

  51. Gunst, S. J., Meiss, R. A., Wu, M.-F. and Rowe, M., Mechanisms for the mechanical plasticity of tracheal smooth muscle.Am. J. Physiol Cell Physiol., 268, C1267-C1276 (1995).

  52. Hai, C.-M., Bansal, N. and Zander, J., Mechanical strain-dependent cytoskeletal recruitment of vinculin in airway smooth muscle.Am. J. Respir. Crit. Care Med., 161, A472 (2000). (Abstract).

  53. Hai, C.-M. and Ma, C. B. B., Fluoroaluminate- and GTPγS-induced stress, shortening, and myosin phosphorylation in airway smooth muscle.Am. J. Physiol., 265 (Lung Cell Mol. Physiol. 9), L73-L79 (1993).

  54. Hai, C.-M. and Szeto, B., Agonist-induced myosin phosphorylation during isometric contraction and unloaded shortening in airway smooth muscle.Am. J. Physiol., 262 (Lung Cell. Mol. Physiol. 6), L53-L62 (1992).

  55. Hai, C.-M. and Murphy, R. A., Ca2+, crossbridge phosphorylation, and contraction.Annu. Rev. Physiol., 51, 285–298 (1989).

  56. Hakonarson, H. and Grunstein, M. M., Regulation of second messengers associated with airway smooth muscle contraction and relaxation.Am. J. Respir. Crit. Care Med., 158, S115-S122 (1998).

  57. Hall, I. P., Donaldson, J. and Hill, S. J., Modulation of fluoroaluminate-induced inositol phosphate formation by increases in tissue cyclic AMP content in bovine tracheal smooth muscle.Br. J. Pharmacol., 100, 646–650 (1990).

  58. Harris, D. E. and Warshaw, D. M., Length vs. active force relationship in single isolated smooth muscle cells.Am. J. Physiol., 260 (Cell. Physiol. 29), C1104-C1112 (1991).

  59. Hashimoto, Y. and Soderling, T. R., Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: comparative study of the phosphorylation sites.Arch. Biochem. Biophys., 278, 41–45 (1990).

  60. Hirshman, C. A., Togashi, H., Shao, D. and Emala, C. W., Gαi2 is required for carbachol-induced stress fiber formation in human airway smooth muscle cells.Am. J. Physiol., 275, L911-L916 (1998).

  61. Horowitz, A., Menice, C. B., Laporte, R. and Morgan, K. G., Mechanisms of smooth muscle contraction.Physiol. Rev., 76, 967–1003 (1996).

  62. Horowitz, A., Trybus, K. M., Bowman, D. S. and Fay, F. S., Antibodies probe for folded monomeric myosin in relaxed and contracted smooth muscle.J. Cell Biol., 126, 1195–1200 (1994).

  63. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. and Burridge, K., Interaction of plasma membrane fibronectin receptor with talin a transmembrane linkage.Nature, 320, 531–533 (1986).

  64. Ingber, D. Integrins as mechanochemical transducers.Curr. Opin. Cell Biol., 3, 841–848 (1991).

  65. Jacobson, K., Sheets, E.D. and Simson, R., Revisiting the fluid mosaic model of membranes.Science, 268, 1441–1442 (1995).

  66. Janssen, L. J., Betti, P. A., Netherton, S. J. and Walters, D. K., Superficial buffer barrier and preferentially directed release of Ca2+ in canine airway smooth muscle.Am. J. Physiol., 276, L744-L753 (1999).

  67. Johnson, R. P. and Craig, S. W., An intramolecular association between the head and tail domains of vinculin modulates talin binding.J. Biol. Chem., 269, 12611–12619 (1994).

  68. Johnson, R. P. and Craig, S. W., F-actin binding site masked by the intramolecular association of vinculin head and tail domains.Nature, 373, 261–264 (1995).

  69. Kai, T., Yoshimura, H., Jones, K. A. and Warner, D.O., Relationship between force and regulatory myosin light chain phosphorylation in airway smooth muscle.Am. J. Physiol. Lung Mol. Physiol., 279, L52-L58 (2000).

  70. Kajita, J. and Yamaguchi, H., Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle.Am. J. Physiol., 264 (Lung Cell. Mol. Physiol. 8), L496-L503 (1993).

  71. Kamishima, T., Nelson, M. T. and Patlak, J. B., Carbachol modulates voltage sensitivity of calcium channels in bronchial smooth muscle of rats.Am. J. Physiol., 263 (Cell Physiol. 32), C69-C77 (1992).

  72. Kim, I., Je, H.-D., Gallant, C., Zhan, Q., Van Riper, D., Badwey, J. A., Singer, H. A. and Morgan, K. G., Ca2+-calmoduliln-dependent protein kinase II-dependent activation of contractility in ferret aorta.J. Physiol., 526, 367–374 (2000).

  73. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K., Regulation of myosin phosphatase by Rho and Rho-associated kinase.Science, 273, 245–248 (1996).

  74. Kirber, M. T., Walsh, J. V. and Singer, J. J., Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction.Pfluegers Arch., 412, 339–345 (1988).

  75. Kulik, T. J., Bialecki, R., Colucci, W. S., Rothman, A., Glennon, E. T. and Underwood, R. H., Stretch increases inositol trisphosphate and inositol tetrakisphosphate in cultured pulmonary vascular smooth muscle cells.Biochem. Biophys. Res. Commun., 180, 982–987 (1991).

  76. Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kaibuchi, K. and Ito, M., Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation.J. Biol. Chem., 272, 12257–12260 (1997).

  77. Lee, M. W. and Severson, D. L., Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action.Am. J. Physiol., 267, C659–678 (1994).

  78. Liu, M., Qin, Y., Liu, J., Tanswell, A. K. and Post, M., Mechanical strain induces pp60src activation and translocation to cytoskeleton in fetal rat lung cells.J. Biol. Chem., 271, 7066–7071 (1996).

  79. Liu, S., Thomas, S. M., Woodside, D. G., Rose, D. M., Kiosses, W. B., Pfaff, M. and Ginsberg, M. H., Binding of paxillin to alpha4 integrins modifies integrin-dependent biological responses.Nature, 402, 676–681 (1999).

  80. Marston, S., Burton, D., Copeland, O., Fraser, I., Gao, Y., Hodgkinson, J., Huber, P., Levine, B., el Mezgueldi, M. and Notarianni, G., Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments.Acta Physiol. Scand., 164, 401–414 (1998).

  81. Matsumoto, H., Baron, C. B. and Coburn, R. F., Smooth muscle stretch-activated phospholipase C activity.Am. J. Physiol., 268 (Cell Physiol. 37), C458-C465 (1995).

  82. McGuffee, L. J. and Little, S. A., Three-dimensional characterization of dense bodies in contracted and relaxed mesenteric artery smooth muscle cells.Scanning Microsc., 6, 837–845 (1992).

  83. McGuffee, L. J., Mercure, J. and Little, S. A., Three-dimensional structure of dense bodies in rabbit renal artery smooth muscle.Anat. Rec., 229, 499–504 (1991).

  84. Mehta, D. and Gunst, S. J., Actin polymerization stimulated by contractile activation regulates force development in canine tracheal smooth muscle. J. Physiol., 519, 829–840 (1999).

  85. Mehta, D., Wang, Z., Wu, M. F. and Gunst, S. J., Relationship between paxillin and myosin phosphorylation during muscarinic stimulation of smooth muscle.Am. J. Physiol., 274, C741-C747 (1998).

  86. Mehta, D., Wu, M.-F. and Gunst, S. J., Role of contractile protein activation in the length-dependent modulation of tracheal smooth muscle.Am. J. Physiol., 270 (Cell Physiol. 39), C243-C252 (1996).

  87. Missiaen, L., De Smedt, H., Droogmans, G., Himpens, B. and Casteels, R., Calcium ion homeostasis in smooth muscle.Pharmac. Ther., 56, 191–231 (1992).

  88. Moreland, R. S. and Murphy, R. A., Dependence of stress on length, Ca2+, and myosin phosphorylation in skinned smooth muscle.Am. J. Physiol., 255 (Cell Physiol. 24), C473-C478 (1988).

  89. Muguruma, M., Matsumura, S. and Fukazawa, T., Direct interactions between talin and actin.Biochem. Biophys. Res. Commun., 171, 1217–1223 (1990).

  90. Muguruma, M., Matsumura, S. and Fukazawa, T., Augmentation of alpha-actinin-induced gelation of actin by talin.J. Biol. Chem., 267, 5621–5624 (1992).

  91. Murphy, R. A. What is special about smooth muscle? The significance of covalent crossbridge regulation.FASEB J., 8, 311–318 (1994).

  92. Morris, C. E. Mechanosensitive ion channels.J. Membrane Biol., 113, 93–107 (1990).

  93. Murray, R. K. and Kotlikoff, M. I., Receptor-activated calcium influx in human airway smooth muscle cells.J. Physiol., (Lond.) 435, 123–144 (1991).

  94. North, A. J., Gimona, M., Lando, Z. and Small, J. V., Actin isoform compartments in chicken gizzard smooth muscle cells.J. Cell Sci., 107, 445–455 (1994).

  95. Obara, K. and Yabu, H., Effect of cytochalasin B on intestinal smooth muscle cells.Eur. J. Pharmacol., 255, 139–147 (1994).

  96. Onishi, H., Suzuki, H., Nakamura, K., Takahashi, K. and Watanabe, S., Adenosine triphosphatase activity and thick filament formation of chick gizzard myosin in low salt media.J. Biochem., 83, 835–847 (1978).

  97. Otey, C. A., Pavalko, F. M. and Burridge, K., An interaction between alpha-actinin and the beta 1 integrin subunit in vitro.J. Cell Biol., 111, 721–729 (1990).

  98. Pavalko, F. M., Adam, L. P., Wu, M. F., Walker, T. L. and Gunst, S. J., Phosphorylation of dense-plaque proteins talin and paxillin during tracheal smooth muscle contraction.Am. J. Physiol., 268, C563-C571 (1995).

  99. Pratusevich, V. R., Seow, C. Y. and Ford, L. E., Plasticity in canine airway smooth muscle.J. Gen. Physiol., 105, 73–94 (1995).

  100. Putney, J. W., Jr. and St. J. Bird, G., The signal for capacitative calcium entry.Cell, 75, 199–201 (1993).

  101. Ratz, P. H., Hai, C.-M. and Murphy, R. A., Dependence of stress on cross-bridge phosphorylation in vascular smooth muscle.Am. J. Physiol., 256 (Cell Physiol. 25), C96-C100 (1989).

  102. Rhee, S. G. and Bae, Y. S., Regulation of phosphoinositide-specific phospholipase C isoenzymes.J. Biol. Chem., 272, 15045–15048 (1997).

  103. Sasaki, H. and Hoppin, F. G., Jr. Hysteresis of contracted airway smooth muscle.J. Appl. Physiol., 47, 1251–1262 (1979).

  104. Schaller, M. D. and Parsons, J. T., Focal adhesion kinase and associated proteins.Curr. Opin. Cell Biol., 6, 705–710 (1994).

  105. Small, J. V. Studies on isolated smooth muscle cells: the contractile apparatus.J. Cell Sc., 24, 327–349 (1977).

  106. Small, J. V. Geometry of actin-membrane attachments in the smooth muscle cell, the localizations of vinculin and alpha-actinin.EMBO J., 4, 45–49 (1985).

  107. Small, J. V. Structure-function relationships in smooth muscle: the missing links.Bioessays, 17, 785–792 (1995).

  108. Smith, P. G., Garcia, R. and Kogerman, L., Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells.Exp. Cell Res., 232, 127–136 (1997).

  109. Smith, P. G., Garcia, R. and Kogerman, L., Mechanical strain increases protein tyrosine phosphorylation in airway smooth muscle cells.Exp. Cell Res., 239, 353–360 (1998).

  110. Somlyo, A. P. and Somlyo, A. V., Signal transduction and regulation in smooth muscle.Nature, 372, 231–236 (1994).

  111. Somlyo, A. P. and Somlyo, A. V., Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II.J. Physiol., 522, 177–185 (2000).

  112. Somlyo, A. V., Butler, T. M., Bond, M. and Somlyo, A. P., Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle.Nature, 294, 567–569 (1981).

  113. Somlyo, A. V., Goldman, Y. E., Fujimori, T., Bond, M., Trentham, D. R. and Somlyo, A. P., Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study.J. Gen. Physiol., 91, 165–192 (1988).

  114. Sternweis, P. C. and Gilman, A. G., Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.Proc. Natl. Acad. Sci., USA 79, 4888–4891 (1982).

  115. Stull, J. T., Hsu, L. C., Tansey, M. G. and Kamm, K. E., Myosin light chain kinase phosphorylation in tracheal smooth muscle.J. Biol. Chem., 265, 16683–16690 (1990).

  116. Suzuki, H., Onishi, H., Takahashi, K. and Watanabe, S., Structure and function of chicken gizzard myosin.J. Biochem., 84, 1529–1542 (1978).

  117. Tachibana, K., Sato, T., DAvirro, N. and Morimoto, C., Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK.J. Exp. Med., 182, 1089–1099 (1995).

  118. Tang, D., Mehta, D. and Gunst, S. J., Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle.Am. J. Physiol., 276, C250-C258 (1999).

  119. Tansey, M. G., Word, R. A., Hidaka, H., Singer, H. A., Schworer, C. M., Kamm, K. E. and Stull, J. T., Phosphorylation of myosin light chain kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells.J. Biol. Chem., 267, 12511–12516 (1992).

  120. Tanaka, T., Yamaguchi, R., Sabe, H., Sekiguchi, K. and Healy, J. M., Paxillin association in vitro with integrin cytoplasmic domain peptides.FEBS Lett., 399, 53–58 (1996).

  121. Tanaka, Y., Hata, S., Ishiro, H., Ishi, K. and Nakayama, K., Quick stretch increases the production of inositol 1,4,5-trisphosphate (IP3) in porcine coronary artery.Life Sci., 55, 227–235 (1994).

  122. Togashhi, H., Emala, C. W., Hall, I. P. and Hirshman, C. A., Carbachol-induced actin reorganization involves Gi activation of Rho in human airway smooth muscle cells.Am. J. Physiol., 274, L803-L809 (1998).

  123. Tomasic, M., Boyle, J. P., Worley, J. F. III and Kotlikoff, M. I., Contractile agonists activate voltage-dependent calcium channels in airway smooth muscle cells.Am. J. Physiol., 263 (Cell Physiol. 32), C106-C113 (1992).

  124. Tsukita, S., Tsukita, S. and Ishikawa, H., Association of actin and 10 nm filaments with the dense body in smooth muscle cells of the chicken gizzard.Cell Tissue Res., 229, 233–242 (1983).

  125. Tsukita, S., Tsukita, S., Usukura, J. and Ishikawa, H., Myosin filaments in smooth muscle cells of the guinea pig taenia coli: a freeze-substitution study.Eur. J. Cell Biol., 28, 195–201 (1982).

  126. Turner, C. E., Glenney, J. R. and Burridge, K., Paxillin: a new vinculin-binding protein present in focal adhesions.J. Cell Biol. 111, 1059–1068 (1990).

  127. VanBavel, E. and Mulvany, M. J., Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries.J. Physiol. (Lond.), 477, 103–115 (1994).

  128. Van Breemen, C. and Saida, K., Cellular mechanisms regulating [Ca2+]l in smooth muscle.Annu. Rev. Physiol., 51, 315–329 (1989).

  129. Wang, Z., Pavalko, F. M. and Gunst, S. J., Tyrosine phosphorylation of the dense plaque protein paxillin is regulated during smooth muscle contraction.Am. J. Physiol., 271, C1594–1602 (1996).

  130. Watanabe, M., Takemori, S. and Yagi, N., X-ray diffraction study on mammalian visceral smooth muscles in resting and activated states.J. Muscle Res. Cell Motil., 14, 469–475 (1993).

  131. Winder, S. J., Allen, B. G., Clement-Chomienne, O. and Walsh, M. P., Regulation of smooth muscle actin-myosin interaction and force by calponin.Acta Physiol. Scand., 164, 415–426 (1998).

  132. Winkler, J., Lunsdorf, H. and Jockusch, B. M., Flexibility and fine structure of smooth muscle alpha-actinin.Eur. J. Biochem., 248, 193–199 (1997).

  133. Wright, G. and Hurn, E., Cytochalasin inhibition of slow tension increase in rat aortic rings.Am. J. Physiol., 267 (Heart Circ. Physiol. 36), H1437-H1446 (1994).

  134. Xu, J. Q., Gillis, J. M. and Craig, R., Polymerization of myosin on activation of rat anococcygeus smooth muscle.J. Muscle Res. Cell Motil., 18, 381–393 (1997).

  135. Yang, C. M., Yo, Y.-L. and Wang, Y.-Y., Intracellular calcium in canine cultured tracheal smooth muscle cells is regulated by M3 muscarinic receptors.Br. J. Pharmacol., 110, 983–988 (1993).

  136. Yoo, J., Ellis, R., Morgan, K. G. and Hai, C.-M., Mechanosensitive modulation of myosin phosphorylation and phosphatidylinositol tunover in smooth muscle.Am. J. Physiol., 267 (Cell Physiol. 36), C1657-C1665 (1994).

  137. Youn, T., Kim, S. A. and Hai, C.-M., Length-dependent modulation of smooth muscle activation: effects of agonist, cytochalasin, and temperature.Am. J. Physiol., 274 (Cell Physiol. 43), C1601-C1607 (1998).

  138. Zou, Y., Hu, Y., Metzler, B. and Xu, Q., Signal transduction in arteriosclerosis: mechanical stress-activated MAP kinases in vascular smooth muscle cells.Int. J. Med. 1, 827–834 (1998).

Download references

Author information

Correspondence to Chi-Ming Hai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hai, C. Mechanosensitive modulation of receptor-mediated crossbridge activation and cytoskeletal organization in airway smooth muscle. Arch Pharm Res 23, 535 (2000). https://doi.org/10.1007/BF02975237

Download citation

Key words

  • Asthma
  • Bronchodilation
  • Cytoskeleton
  • Mechanotransduction