Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of n-Alkanols on the lateral diffusion of total phospholipid fraction extracted from brain membranes

  • 19 Accesses

  • 2 Citations

Abstract

We investigated the effects ofn-alkanols on the range and rate of the lateral diffusion of 1,3-di(1-pyrenyl)propane in the model membranes of total phospholipid fraction extracted from synaptosomal plasma membrane vesicles. n-Alkanols increased the range and rate of the lateral diffusion of 1,3-di(1-pyrenyl)propane in the bulk model membrane structures (inner+outer monolayers) and the potencies ofn-alkanols up to 1-nonanol increased by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in the lateral diffusion. However, significant changes in the l′/l value were not observed by methanol (from 100 to 2500 mM), ethanol (from 25 to 800 mM), and 1-propanol (from 10 to 250 mM) over entire concentration.

This is a preview of subscription content, log in to check access.

References Cited

  1. Bartlett, G. R., Phosphorus assay in column chromatography.J. Biol. Chem., 234, 466–468 (1959).

  2. Chung, I. K., Kang, J. S. and Yun, I., The effect ofn-alkanols on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex.Korean J. Pharmacol., 29, 157–163 (1993a).

  3. Chung, I. K., Kang, J. S., Kim, H. I., Kim, J. R. and Yun, I., Effects ofn-alkanols on the lateral diffusion of model membranes of total lipid fraction extracted from brain membranes.Arch. Oral Biotech. Res., 1, 1–7 (1993b).

  4. Franks, N. P. and Lieb, W. R., What is the molecular nature of general anesthetic target sites?Trends Pharmacol. Sci., 8, 169–174 (1987).

  5. Goldstein, D. B., The effects of drugs on membrane fluidity.Ann. Rev. Pharmacol. Toxicol., 24, 43–64 (1984).

  6. Gonzales, R. A. and Hoffman, P. L., Receptor-gated ion channels may be selective CNS targets for ethanol.Trends Pharmacol. Sci., 12, 1–3 (1991).

  7. Harris, R. A., Baxter, D. M., Mitchel, M. A. and Hitzemann, R. J., Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice.Mol. Pharmacol., 25, 401–409 (1984).

  8. Harris, R. A. and Bruno, P., Membrane disordering by anesthetic drugs: Relationship to synaptosomal sodium and calcium fluxes.J. Neurochem., 44, 1274–1281 (1985).

  9. Harris, R. A. and Schroeder, F., Ethanol and the physical propertis of brain membranes.Mol. Pharmacol., 20, 128–137 (1981).

  10. Hirayama, F., Intramolecular excimer formation. I. Diphenyl and triphenyl alkanes.J. Chem. Phys., 42, 3163–3171 (1965).

  11. Hitzemann, R. J., Harris, R. A. and Loh, H. H., Pharmacological, developmental, and physiological regulation of synaptic membrane phospholipids, In Kuo, J. F. (Ed.),Phospholipids and Cellular Regulation, CRC Press, Boca Raton, 1985, pp. 97–130.

  12. Jain, M. K. and Wu, N. M., Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer.J. Membrane Biol., 34, 157–201 (1977).

  13. Lee, N. M. and Smith, A. S., Ethanol, In Ho, I. K. (Ed.),Toxicology of CNS Depressants, CRC Press, Boca Raton, 1986, pp. 35–67.

  14. Lyon, R. C., McComb, J. A., Schreus, J. and Goldstein, D. B., A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols.J. Pharmacol. Exp. Ther., 218, 669–675 (1981).

  15. Madeira, V. M. C. and Antunes-Madeira, M. C., Lipid composition of biomembranes: a complete analysis of sarcoplasmic reticulum phospholipids.Cienc. Biol. (Coimbra), 2, 265–291 (1976).

  16. Manevich, E. M., Koiv, A., Jarv, J., Molotkovsky, J. G. and Bergelson, L. D., Binding of specific ligands to muscarinic receptor alters the fluidity of membrane fragments from rat brain. A fluorescence polarization study with lipid-specific probes.FEBS Letters, 236, 43–46 (1988).

  17. Oldfield, E. and Chapman, D., Dynamics of lipids in membranes: heterogeneity and the role of cholesterol.FEBS Letters, 23, 285–297 (1972).

  18. Perlman, B. J. and Goldstein, D. B., Genetic influence on the central nervous system depressant and membrane-disordering actions of ethanol and sodium valproate.Mol. Pharmacol., 26, 547–552 (1984).

  19. Sanna, E., Concas, A., Serra, M., Santoro, G. and Biggio, G., Ex vivo bind of t-[35S]butylbicyclophosphorothionate: a biochemical tool study the pharmacology of ethanol at the γ-aminobutyric acid-coupled chloride channel.J. Pharmacol. Exp. Ther., 256, 922–928 (1991).

  20. Schachter, D., Fluidity and function of hepatocyte plasma membranes.Hepatology, 4, 140–151 (1984).

  21. Shinitzky, M., Membrane Fluidity and Cellular Functions, In Shinitzky, M. (Ed.),Physiology of Membrane Fluidity, CRC Press, Boca Raton, 1986, pp. 1–39.

  22. Sweet, W. D. and Schroeder, F., Lipid domains and enzyme activity, In Aloia, R. C., Curtain, C. C. and Gordon, L. M. (Eds.),Advances in membrane fluidity, Alan R Liss Inc., New York, 1988, pp. 33–42.

  23. Vanderkooi, J. M. and Callis, J. B., Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes.Biochemistry, 13, 4000–4006 (1974).

  24. Yun, I. and Kang, J. S., The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex.Mol. Cells, 1, 15–20 (1990).

  25. Yun, I. and Kang, J. S., Transbilayer effects ofn-alkanols on the fluidity of phospholipid model membranes.Arch. Pharm. Res., 15, 152–161 (1992a).

  26. Yun, I. and Kang, J. S., Transbilayer effects ofn-alkanols on the fluidity of total lipids extracted from synaptosomal plasma membrane vesicles.Korean J. Pharmacol., 28, 191–199 (1992b).

  27. Yun, I. and Kang, J. S., Effects of barbiturates on transbilayer fluidity domains of phospholipid model membrane monolayers.Korean J. Pharmacol., 28, 103–114 (1992c).

  28. Yun, I., Han, S. K., Baik, S. W., Kim, N. H., Kang, J. S., Chung, J. K. and Lee, E. J., Effects of local anesthetics on the fluidity of synaptosomal plasma membrane vesicles isolated from bovine brain.Korean J. Pharmacol., 24, 43–52 (1988).

  29. Yun, I., Kim, H. I., Hwang, T. H., Kim, J. R., Kim I. S., Chung, Y. Z., Shin, Y. H., Jung, H. O. and Kang, J. S., Effects of barbiturates on the fluidity of phosphatidylethanolamine model membranes.Korean J. Pharmacol., 26, 209–217 (1990a).

  30. Yun, I., Kim, Y. S., Yu, S. H., Chung, I. K., Kim, I. S., Baik, S. W., Cho, G. J., Chung,Y. Z., Kim, S. H. and Kang, J. S., Comparison of several procedures for the preparation of synaptosomal plasma membrane vesicles.Arch. Pharm. Res., 13, 325–329 (1990b).

  31. Zachariasse, K. A., Intramolecular excimer formation with diarylalkanes as a microfluidity probe for sodium dodecyl sulphate micells.Chem. Phys. Letters, 57, 429–432 (1978).

Download references

Author information

Correspondence to Il Yun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, I., Kang, J. & Yun, I. Effects of n-Alkanols on the lateral diffusion of total phospholipid fraction extracted from brain membranes. Arch. Pharm. Res. 16, 191–195 (1993). https://doi.org/10.1007/BF02974481

Download citation

Key words

  • n-Alkanols
  • Fluorescence probe technique
  • Lateral mobility
  • Liposomes