Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Differential functions of ras for malignant phenotypic conversion

  • 65 Accesses

  • 23 Citations


Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.

This is a preview of subscription content, log in to check access.


  1. Alessi, D. R., Saito, Y., Campbell, D. G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C. J., and Cowley, S., Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1.EMBO J., 13, 1610–1619 (1994).

  2. Bachmeier, B. E., Albini, A., Vene, R., Benelli, R., Noonan, D., Weigert, C., Weiler, C., Lichtinghagen, R., Jochum, M., and Nerlich, A. G., Cell density-dependent regulation of matrix metalloproteinase and TIMP expression in differently tumorigenic breast cancer cell lines.Exp. Cell Res., 305, 83–98 (2005).

  3. Barbacid, M., Ras genes.Annu. Rev. Biochem., 56, 779–827 (1987).

  4. Bergman, M. R., Cheng, S., Honbo, N., Piacentini, L., Karliner, J. S., and Lovett, D. H., A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers.Biochem. J., 369, 485–496 (2003).

  5. Bernhard, E. J., Gruber, S. B., and Muschel, R. J., Direct evidence linking expression of matrix metalloproteinase 9 (92 kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells.Proc. Natl. Acad. Sci. U.S.A., 91, 4293–4297 (1994).

  6. Bernhard, E. J., Muschel, R. J., Hughes, E. N., and M. R., 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells.Cancer Res., 50, 3872–3877 (1990).

  7. Bian, D., Su, S., Mahanivong, C., Cheng, R. K., Han, Q., Pan, Z. K., Sun, P., and Huang, S., Lysophosphatidic Acid stimulates ovarian cancer cell migrationvia a Ras-MEK kinase 1 pathway.Cancer Res., 64, 4209–4217 (2004).

  8. Bian, J., and Sun, Y., Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.Mol. Cell Biol., 17, 6330–6338 (1997).

  9. Bivona, T. G., Perez De Castro, I., Ahearn, I. M., Grana, T. M., Chiu, V. K., Lockyer, P. J., Cullen, P. J., Pellicer, A., Cox, A. D., and Philips, M. R., Phospholipase Cgamma activates Ras on the Golgi apparatus by means of Ras-GRP1.Nature, 7, 694–698 (2003).

  10. Bodey, B., Bodey, B. Jr., Groger, A. M., Siegel, S. E., and Kaiser, H. E., Invasion and metastasis: the expression and significance of matrix metalloproteinases in carcinomas of the lung.In Vivo, 15, 175–180 (2001).

  11. Boguski, M. S. and McCormick, F., Proteins regulating Ras and its relatives.Nature, 663, 643–654 (1993).

  12. Booden, M. A., Sakaguchi, D. S., and Buss, J. E., Mutation of Ha-Ras C terminus changes effector pathway utilization.J. Biol. Chem. 275, 23559–23568 (2000).

  13. Bos, J. L., Ras oncogenes in human cancer: a review.Cancer Res., 49, 4682–4689 (1989).

  14. Brown, P. D., Levy, A. T., Margulies, I. M., and Liotta, L. A., and Stetler-Stevenson, W. G., Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines.Cancer Res., 50, 6184–6191 (1990).

  15. Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J., Increasing complexity of Ras signaling.Oncogene, 17, 1395–1413 (1998).

  16. Carbone, A., Gusella, G. L., Radzioch, D., and Varesio, L., Human Harvey-ras is biochemically different from Kirsten- or N-ras.Oncogene, 6, 731–737 (1991).

  17. Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E., p21ras is modified by a farnesyl isoprenoid.Proc. Natl. Acad. Sci. U.S.A., 86, 8323–8327 (1989).

  18. Chiu, V. K., Bivona, T., Hach, A., Sajous, J. B., Silletti, J., Wiener, H., Johnson, R. L. II, Cox, A. D., and Philips, M. R., Ras signalling on the endoplasmic reticulum and the Golgi.Nat. Cell Biol., 4 343–350 (2002).

  19. Choy, E., V. K., Chiu, J., Silletti, M., Feoktistov, T., Morimoto, D., Michaelson, I. E., Ivanov, and M. R. Philips., Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi.Cell 98, 69–80 (1999)

  20. Chung, T. W., Lee, Y. C., and Kim, C. H., Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential.FASEB J., 18, 1123–1125 (2004).

  21. Clair, T., Miller, W., and Cho-Chung, Y., Prognostic significance of the expression of the ras protein with a molecular weight of 21,000 by human breast cancer.Cancer Res., 49, 5290–5293 (1987).

  22. Clark, G. J. and Der, C. J., Aberrant function of the Ras signal transduction pathway in human breast cancer.Breast Cancer Res. Treat., 35, 133–144 (1995).

  23. Cox, A. D. and Der, C. J., Fanesyltransferase inhibitors and cancer treatment: targeting simply Ras?Biochem. Biophys. Acta, 1333, F51-F71 (1997).

  24. Datta, S. R., Brunet, A., and Greenberg, M. E., Cellular survival: aplay in three Akts.Genes Dev., 13, 2905–2927 (1999).

  25. Downward, J., Mechainsms and consequences of activation of protein kinase B/Akt.Curr. Opin. Cell Biol., 10, 262–267 (1998).

  26. Downward, J., Targeting ras signaling pathways in cancer therapy.Nature, 3, 11–22 (2003).

  27. Etienne-Manneville, S. and Hall, A., Rho GTPases in cell biology.Nature, 420, 629–635 (2002).

  28. Feig, L. A., Urano, T., and Canto, S., Evidence for a Ras/Ral signaling cascade.Trends Biochem. Sci., 21, 438–441 (1996).

  29. Franks, L. M. and Teich, N. M., Cellular and Molecular Biology of Cancer. Oxford University Press, (1997).

  30. Gum, R., Wang, H., Lengyel, E., Juarez, J., and Boyd, D., Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades.Oncogene, 14, 1481–1493 (1997).

  31. Gutierrez, L., Magee, A. I., Marshall, C. J., and Hancock, J. F., Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis.EMBO J., 8, 1093–1098 (1989).

  32. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., All Ras proteins are polyisoprenylated but only some are palmitoylated.Cell, 57, 1167–1177 (1989).

  33. Hancock, J. F., Peterson, H., and Marshall, C. J., A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane.Cell, 63, 133–139 (1990).

  34. Hancock, J. F., Ras proteins: different signals from different locations.Nat. Rev. Mol. Cell Biol., 4, 373–384 (2003).

  35. Jiang, K., Sun, J., Cheng, J., Djeu, J. Y., Wei, S., and Sebti, S., Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis.Mol. Cell Biol., 24, 5565–5576 (2004).

  36. Johnson, L., Greenbaum, D., Cichowski, K., Mercer, K., Murphy, E., Schmitt, E., Bronson, R. T., Umanoff, H., Edelmann, W., Kucherlapati, R., and Jacks, T., K-ras is an essential gene in the mouse with partial functional overlap with N-ras.Genes Dev., 11, 2468–2481 (1997).

  37. Joneson, T., White, M., Wigler, M., and Bar-Sagi, D., Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras.Science, 271, 810–812 (1996).

  38. Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J., Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity.Proc. Natl. Acad. Sci. U.S.A., 89, 6403–6407 (1992).

  39. Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., and Parise, L. V., Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K.Nature, 390, 632–636 (1997).

  40. Khwaja, A., Akt is more than just a Bad kinase.Nature, 401, 33–34 (1999).

  41. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. and Downward, J., Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.EMBO J., 16, 2783–2793 (1997).

  42. Kim, M. S., Lee, E. J., Choi kim, H. R., and Moon, A., p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell.Cancer Res., 63, 5454–5461 (2003).

  43. Koera, K., Nakamura, K., Nakao, K., Miyoshi, J., Toyoshima, K., Hatta, T., Otani, H., Aiba, A., and Katsuki, M., K-ras is essential for the development of the mouse embryo.Oncogene, 15, 1151–1159 (1997).

  44. Kyriakis, J. M., App, H., Zhang, X.F., Banerjee, P., Brautigan, D.L., Rapp, U. R., and Avruch, J., Raf-1 activates MAP kinase-kinase.Nature, 358, 417–421 (1992).

  45. Lambert, J. M., Lambert, Q. T., Reuther, G. W., Malliri, A., Siderovski, D. P., Sondek, J., Collard, J. D., and Der, C. J., Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechnism.Nature, 417, 625–821 (2002).

  46. Leevers, S. J., Paterson, H. F., and Marshall, C. J., Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane.Nature, 369, 411–414 (1994).

  47. Li, J. J., Cao, Y., Young, M. R., and Colburn, N. H., Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes.Mol. Carcinog., 29, 159–169 (2000).

  48. Li, J. J., Rhim, J. S., Schlegel, R., Vousden, K. H., and Colburn, N. H., Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes.Oncogene, 16, 2711–2721 (1998).

  49. Li, J. J., Westergaard, C., Ghosh, P., and Colburn, N. H., Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response.Cancer Res., 57, 3569–3576 (1997).

  50. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation.Cell, 64, 327–336 (1991).

  51. Ludes-Meyers, J. H., Liu, Y., Munoz-Medellin, D., Hilsenbeck, S. G., and Brown, P. H., AP-1 blockade inhibits the growth of normal and malignant breast cells.Oncogene, 20, 2771–2780 (2001).

  52. Magee, T., and Marshall, C., New insights into the interaction of Ras with the plasma membrane.Cell, 98, 9–12 (1999).

  53. Maher, J., Baker, D. A., Manning, M., Dibb, N. J., and Roberts, I. A. G., Evidence for cell-specific differences in transformation by N-, H- and K-ras.Oncogene, 11, 1639–1647 (1995).

  54. Malliri, A., Van der Kammen, R. A., Clark, K., Van der Valk, M., Michiels, F., and Collar, J. G., Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumors.Nature, 417, 867–871 (2002).

  55. Marais, R., Light, Y., Paterson, H. F., and Marshall, C. J., Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation.EMBO J., 14, 3136–3145 (1995).

  56. Marshall, C. J., Ras effectors.Curr. Opin. Cell Biol., 8, 197–204 (1996).

  57. Matallanas, D., Arozarena, I., Berciano, M. T., Aaronson, D. S., Pellicer, A., Lafarga, M., and Crespo, P., Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization.J. Biol. Chem., 278, 4572–4581 (2003).

  58. Moon, A., Kim, M. S., Kim, T. G., Kim, H. E., Chen, Y. Q., and Choi Kim, H. R., H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype.Int. J. Cancer, 85, 176–181 (2000).

  59. Moon, S. K., Cha, B. Y., and Kim, C. H., ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cellsvia the regulation of NF-kappaB and AP-1: Involvement of the ras dependent pathway.J. Cell Physiol., 198, 417–427 (2004).

  60. Nakopoulou, L., Tsirmpa, I., Alexandrou, P., Louvrou, A., Ampela, C., Markaki, S., and Davaris, P. S., MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival.Breast Cancer Res. Treat., 77, 145–155 (2003).

  61. Niv, H., Gutman, O., Kloog, Y., and Henis, Y. I., Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells.J. Cell Biol., 157, 865–872 (2002).

  62. Nobes, C. D. and Hall, A., Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexs associated with actin stress fibers, lamlipodia, and filopodia.Cell, 81, 53–62 (1995).

  63. Oldham, S. M., Clark, G. J., Gangarosa, L. M., Coffey, R. J., and Der, C. J., Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells.Proc. Natl. Acad. Sci. U.S.A., 93, 6924–6928 (1996).

  64. Oliff, A., Rarnesyltransferse inhibitors: targeting the molecular basis of cancer.Biochim. Biophys. Acta, 1423, C19-C30 (1999).

  65. Pacold, M. E., Suire, S., Perisic, O., Lara-Gonzlez, W., Davis, C. T., Walker, E. H., Hawkins, P. T., Stephens, L., Eccleston, J. R., and Williams, R. L., Crystal strucure and functional analysis of Ras binding to its effector phosphoinositide 3-kinaseã.Cell, 103, 931–943 (2000).

  66. Parton, R. G. and Hancock, J. F., Lipid rafts and plasma membrane microorganization: insights from Ras.Trends Cell Biol., 14, 141–147 (2004).

  67. Pola, S., Cattaneo, M. G., and Vicentini, L. M., Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: involvement of Rac and MAP kinase activity.J. Biol. Chem., 278, 40601–40606 (2003).

  68. Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G. and Hancock, J. F., GTP-dependent segregation of H-ras from lipid rafts is required for biological activity.Nat. Cell Biol., 3, 368–375 (2001).

  69. Prior, I. A. and Hancock, J. F., Compartmentalization of ras proteins.J. Cell Sci., 114, 1603–1608 (2001).

  70. Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F., Direct visualization of Ras proteins in spatially distinct cell surface microdomains.J. Cell Biol., 160, 165–170 (2003).

  71. Pruitt, K. and Der, C. J., Ras and Rho regulation of the cell cycle and oncogenesis.Cancer Lett., 171, 1–10 (2001).

  72. Qin, H., Sun, Y., and Benveniste, E. N., The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells.J. Biol. Chem., 274, 29130–29137 (1999).

  73. Qui, R., McCormick, F., and Symons, M., An essential role for Rac in Ras transformation.Nature, 374, 457–459 (1995).

  74. Reif, K., Nobes, C. D., Thomas, G., Hall, A., and Cantrell, D. A., Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways.Curr. Biol. 6, 1445–1455 (1996).

  75. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A., The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.Cell, 70, 401–410 (1992).

  76. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J., Phosphatidylinositol-3-OH kinase as a direct target of Ras.Nature, 370, 527–532 (1994).

  77. Romashkova, J. A. and Makarov, S. S., NF-kappaB is target of AKT in anti-apoptotic PDGF signaling.Nature, 401, 86–90 (1999).

  78. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J. F., and Parton, R. G., Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains.Nat. Cell Biol., 1, 98–105 (1999).

  79. Sachdev, P., Zeng, L., and Wang, L. H., Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes.J. Biol. Chem., 277, 17638–17648 (2002).

  80. Sato, H., Kida, Y., Mai, M., Endo, Y., Sasaki, T., Tanaka, J., and Seiki, M., Mutation spectra of smoky coal combustion emissions in Salmonella reflect the TP53 and KRAS mutations in lung tumors from smoky coal-exposed individuals.Oncogene, 7, 77–83 (1992).

  81. Sato, H., Kita, M., and Seiki, M., v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines.J. Biol. Chem., 268, 23460–23468 (1993).

  82. Sato, H. and Seiki, M., Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells.Oncogene, 8, 395–405 (1993).

  83. Seabra, M. C., Membrane association and targeting or prenylated Ras-like GTPases.Cell signal., 10, 167–172 (1998).

  84. Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J., Understanding Ras: ‘it ain’t over ‘til it’s over’.Trends Cell Biol., 10, 147–154 (2000).

  85. Shin, I. C., Kim, S. H., Song, H., Choi Kim, H. R., and Moon, A., H-Ras-specific activation of Rac-MKK3/6-p38 pathway.J. Biol. Chem., 15, 14675–14683 (2005).

  86. Simon, C., Goepfert, H., and Boyd, D., Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion andin vitro invasion.Cancer Res., 58, 1135–1139 (1998).

  87. Simon, C., Juarez, J., Nicolson, G. L., and Boyd, D., Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression andin vitro invasion.Cancer Res., 56, 5369–5374 (1996).

  88. Simon, C., Simon, M., Vucelic, G., Hicks, M. J., Plinkert, P. K., Koitschev, A., and Zenner, H. P., The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.Exp. Cell Res., 271, 344–355 (2001).

  89. Simons, K. and Toomre, D., Lipid rafts and signal transduction.Nat. Rev. Mol. Cell Biol., 1, 31–39 (2000).

  90. Steller-Stevenson, W. G., Type-IV collagenases in tumor invasion and metastasis.Cancer Metast. Rev., 9, 289–303 (1990).

  91. Stetler-Stevenson, W. G., Hewitt, R., and Corcoran, M., Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic.Semin. Cancer Biol., 7, 147–154 (1996).

  92. Talvensaari-Mattila, A., Paakko, P., Blanco-Sequeiros, G., and Turpeenniemi-Hujanen, T., Matrix metalloproteinase-2 (MMP-2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with antiestrogen adjuvant therapy.Breast Cancer Res. Treat., 65, 55–61 (2001).

  93. Tryggvason, K., Huhtala, P., Tuuttila, A., Chow, L., Keski-Oja, J., and Lohi, J., Structure and expression of type IV collagenase genes.Cell. Differ. Dev., 32, 307–312 (1990).

  94. Tryggvason, K., Type-IV collagenase in invasive tumors.Breast Cancer Res. Treat., 24, 209–218 (1993).

  95. Umanoff, H., Edelmann, W., Pellicer, A., and Kucherlapati, R., The murine N-ras gene is not essential for growth and development.Proc. Natl. Acad. Sci. U.S.A., 92, 1709–1713 (1995).

  96. Ura, H., Bonfil, R. D., Reich, R., Reddel, R., Pfeifer, A., Harris, C. C., and Klein-Szanto, A. J., Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells.Cancer Res., 49, 4615–4621 (1989).

  97. Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E., Signaling pathways for PC12 cell differentiation: making the right connections.Science, 296, 1648–1649 (2002).

  98. Voice, J. K., Klemke, R. L., Le, A., and Jackson, J. H., Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce Transformation, and Stimulate Cell Motility.J. Biol. Chem., 274, 17164–17170 (1999).

  99. Walsh, A. B. and Bar-Sagi, D., Differential activation of the Rac pathway by Ha-Ras and K-Ras.J. Biol. Chem., 276, 15609–152001 (2001).

  100. Watson, D. M., Elton, R. A., Jack, W. J., Dixon, J. M., Chetty, U., and Miller, W. R., The H-ras oncogene product p21 and prognosis in human breast cancer.Breast Cancer Res. Treat., 17, 161–169 (1991).

  101. Welch, H. C., Coadwell, W. J., Stephens, L. R., and Hawkins, P. T., Phosphoinositide 3-kinase-dependent activation of Rac.FEBS Lett., 546, 93–97 (2003).

  102. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G., and Lowy, D. R., The p21 ras C-terminus is required for transformation and membrane association.Nature, 310, 583–586 (1984a).

  103. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., and Lowy, D. R., Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus.EMBO J., 3, 2581–2585 (1984b).

  104. Wolthuis, R. M. and Bos, J. L., Ras caught in another affaif: the RHOad less traveled gets congested.Oncogene, 17, 1415–1438 (1999).

  105. Xu, Q., Karouji, Y., Kobayashi, M., Ihara, S., Konishi, H., and Fukui, Y., The PI 3-kinase-Rac-p38 MAP kinase pathway is involved in the formation of signet-ring cell carcinoma.Oncogene, 22, 5537–5544 (2003).

  106. Yan, J., Roy, S., Apolloni, A., Lane, A., and Hancock, J. F., Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase.J. Biol. Chem., 273, 24052–24056 (1998).

  107. Yordy, J. S. and Muise-Helmericks, R. C., Signal transduction and the Ets family of transcription factors.Oncogene, 19, 6503–6513 (2000).

  108. Zhang, D., Bar-Eli, M., Meloche, S., and Brodt, P., Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals.J. Biol. Chem., 279, 19683–19690 (2004).

Download references

Author information

Correspondence to Aree Moon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moon, A. Differential functions of ras for malignant phenotypic conversion. Arch Pharm Res 29, 113–122 (2006).

Download citation

Key words

  • Ras
  • Tumorigenesis
  • Signaling
  • Invasion
  • Migration