Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of ginseng polysaccharide on the stability of lactic acid bacteria during freeze-drying process and storage

  • 230 Accesses

  • 7 Citations

Abstract

Lactic acid bacteria (LAB) quickly attenuate or are killed during the freeze-drying process and storage. The effect of some natural polysaccharides, which are known as potent antitumor and immunomodulating substances, on the viability of the LAB,Lactobacillus acidophilus andBifidobacterium breve, on freeze-drying and storage were investigated. Among the polysaccharides tested, red ginseng polysaccharide (RGP) and chitosan significantly inhibited the cell death of the LAB during freeze-drying, and fucoidan and RGP most potently protected the cell death of the LAB during storage. The stabilities of the LAB on the addition of RGP and fucoidan were comparable to that of skimmed milk. However, white ginseng polysaccharide (WGP) did not promote storage stability. When 5% skimmed milk/5% RGP treated LAB were freeze-dried and stored, their viabilities were found to be significantly higher those treated with 5% or 10% RGP. The stabilizing effect of 5% RGP/5% skimmed milk during LAB freeze-drying and storage stability was comparable to that of treatment with 10% skimmed milk. Based on these findings, we believe that RGP beneficially improves the stability of LAB during the freeze-dry process and storage.

This is a preview of subscription content, log in to check access.

References

  1. Adachi, S., Lactic acid bacteria and the control of tumors, In Wood, B.J.B. (ed.) The Lactic acid bacteria, vol. 1, Elsevier Science Publishers, Itd., Essex, pp. 233–261 (1992).

  2. Ahn, J. Y., Choi, I. S., Shim, J. Y., Yun, E. K., Yun, Y. S., Jeong, G., and Song, J. Y., The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals.Eur. J. Immunol., 36, 37–45 (2006).

  3. Belogortseva, N. I., Yoon, J. Y., and Kim, K. H., Inhibition ofHelicobacter pylori hemagglutination by polysaccharide fractions from roots ofPanax ginseng.Planta Med., 66, 217–220 (2002).

  4. Campieri, M. and Gionchetti, P., Probiotics in inflammatory bowel disease: New insight to pathogenesis or a possible therapeutic alternative.Gastroenterology, 116, 1246–1260 (1999).

  5. Champagne, C. P., Gardner, N., Brochu, E., and Y. Beaulieu, Y., The freeze-drying of lactic acid bacteria. A review.Can. Inst. Food Sci. Technol. J., 24, 118–128 (1991).

  6. Champagne, C. P., Mondou, F., Raymond, Y., and Roy, D., Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria.Food Res. International, 29, 555–562 (1996).

  7. Collins, M. P. and Gibson, G. R., Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut.Am. J. Clin. Nutr., 69 s1052-s1057 (1999).

  8. Font de Valdez, G., DeGiori, G. S., de Ruiz Holgado A. P., and Oliver, G., Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying.Criobiology, 23, 574–578 (1983).

  9. Gilliland, S. E., Nelson, C. R., and Maxwell, C., Assimilation of cholesterol byLactobacillus acidophilus.Appl. Environ. Microbiol., 49, 377–381 (1985).

  10. Kim, Y. S., Kang, K. S., and Kim, S. I., Study on antitumor and immunomodulating activities of polysaccharide fractions fromPanax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction.Arch. Pharm. Res., 13, 330–337 (1990).

  11. Kim, H. M., Han, S. B., Oh, G. T., Kim, Y. H., Hong, N. D., and Yoo, I. D., Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus.Int. J. Immunopharmacol., 18, 295–303 (1996).

  12. Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, J. K., and Park, J. H., Steaming of ginseng at high temperature enhances biological activity.J. Nat. Prod., 63, 1702–1704 (2000).

  13. Lee, J.-C., Na, K., Yun, J.-M., and Hwang, J.-K.,In vitro Bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng Marc.J. Microbiol. Biotechnol., 11, 858–862. (2001).

  14. Lim, D. S., Bae, K. G., Jung, I. S., Kim, C. H., Yun, Y. S., and Song, J. Y., Anti-septicaemic effect of polysaccharide fromPanax ginseng by macrophage activation.J. Infect., 45, 32–38 (2002).

  15. Mizuno, T., Saito, H., Nishitoba, T., and Kawagashi, H., Antitumor-active substances from mushrooms.Food Rev. Int., 11, 23–61 (1995).

  16. Perdigon, G., de Jorrat, W. E. B., de Petrino, S. F., and Valerde de Budeguer, M., Effect of oral administration ofLactobacillus casei on various biological functions of the host.Food Agric. Immunol., 3, 93–102 (1991).

  17. Rodas, B. Z., Gilliland, S. E., and Maxwell, C. V., Hypocholesterolemic action ofLactobacillus acidophilus ATCC43121 and calcium in swine with hypercholesterolemia induced by diet.J. Dairy Sci., 79, 2121–2128 (1996).

  18. Salminen, S., Deighton, L., and Gorbach, S., Lactic acid bacteria in health and disease, In Salminen, S. and von Wright, A. (Eds.), Lactic acid bacteria, Marcel Dekker, Inc., New York, pp. 199–226 (1974).

  19. Tabuchi, M., Ozaki, M., Tamura, A., Yamada, N., Ishida, T., Hosoda, M., and Hosono, A., Antidiabetic effect ofLactobacillus GG in streptozotocin-induced diabetic rats.Biosci. Biotechnol. Biochem., 67, 1421–1424 (2003).

  20. Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P., and Valdez, G. F., Evidence for hypoglycemic effect ofLactobacillus reuteri in hypercholesterolemic mice.J. Dairy Sci., 81, 2336–2340 (1998).

Download references

Author information

Correspondence to Dong-Hyun Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, S., Seo, S., Kim, S. et al. Effect of ginseng polysaccharide on the stability of lactic acid bacteria during freeze-drying process and storage. Arch Pharm Res 29, 735–740 (2006). https://doi.org/10.1007/BF02974072

Download citation

Key words

  • Lactic acid bacterial
  • Ginseng
  • Polysaccharide
  • Stability