Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An eigenvalue condition for the injectivity and asymptotic stability at infinity

  • 51 Accesses

  • 2 Citations

Abstract

LetU → ℝ2 be a differentiable vector field defined on the complement of a compact set. We study the intrinsic relation between the asymptotic behavior of the real eigenvalues of the differentialDX z and the global injectivity of the local diffeomorphism given byX. This setU induces a neighborhood of ∞ in the Riemann Sphere ℝ2 ∪ {∞}. In this work we prove the existence of a sufficient condition which implies that the vector fieldX:(U, ∞) → (ℝ2, 0), —which is differentiable inU/{∞} but not necessarily continuous at ∞,—has ∞ as an attracting or a repelling singularity. This improves the main result of Gutiérrez-Sarmiento: Asterisque,287 (2003) 89–102.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. Alarcón, V. Guíñez and C. Gutiérrez,Hopf bifurcation at infinity for planar vector fields, Discrete Contin. Dyn. Sys. (to appear).

  2. 2.

    H. Bass, E. Connell andD. Wright,The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.)7 (1982) 287–330.

  3. 3.

    R. H. Bing, The geometric topology of 3-manifolds, Amer. Math. Soc. Colloq. Publ.40, Providenceri 1983.

  4. 4.

    A. V. Černavskii,Addendum to the paper “Finite-to-one open mappings of manifolds”, Mat. Sbornik66, (1965), 471–472.

  5. 5.

    A. V. Černavskii,Finite-to-one open mappings of manifolds, Mat. Sbornik65 (1964), 357–369.

  6. 6.

    M. Chamberland andG. Meisters,A mountain pass to the Jacobian conjecture, Canad. Math. Bull.,41 (1998) 442–451.

  7. 7.

    M. Chamberland, J. Llibre andG. Świrszcz G.,Weakened Markus-Yamabe conditions for 2-dimensional global asymptotic stability, Nonlinear Anal.59 (2004), 951–958.

  8. 8.

    C. Chicone, Ordinary differential equations with applications, Texts Appl. Math.,34, Springer-Verlag, New York 1999.

  9. 9.

    M. Cobo, C. Gutiérrez andJ. Llibre,On the injectivity of C 1 maps of the real plane, Canad. J. Math.54 (2002), 1187–1201.

  10. 10.

    A. Cima, A. van den Essen, A. Gasull, E. Hubbers andF. Mañosas,A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math.131 (1997) 453–457.

  11. 11.

    F. Dumortier andP. De Maesschalck,Topics on singularities and bifurcations of vector fields. Normal forms, bifurcations and finiteness problems in differential equations, 33–86, NATO Sci. Ser. II Math. Phys. Chem., 137, Kluwer Acad. Publ., Dordrecht, 2004.

  12. 12.

    F. Dumortier, R. Roussarie, J. Sotomayor andH. Zoladek, Bifurcations of planar vector fields. Nilpotent singularities and Abelian integrals, Lecture Notes in Math.1480 Springer-Verlag, Berlin, 1991.

  13. 13.

    A. Fernandes, C. Guitiérrez andR. Rabanal,Global asymptotic stability for differentiable vector fields of2, J. Differential Equations206 (2004), 470–482.

  14. 14.

    A. Fernandes, C. Gutiérrez andR. Rabanal,On local diffeomorphisms ofn that are injective, Qual. Theory Dyn. Syst.4 (2004) 255–262.

  15. 15.

    R. Fessler,A proof of the two-dimensional Markus-Yamabe stability conjecture and a generalization, Ann. Polon. Math.62 (1995) 45–74.

  16. 16.

    C. Gutiérrez and N. van Chau,A remark on an eigenvalue condition for the global injectivity of differentiable maps of2, Discrete Contin. Dyn. Sys. (to appear).

  17. 17.

    C. Gutiérrez, B. Pires andR. Rabanal,Asymototic stability at infinity for differentiable vector fields of the plane, J. Differential Equations,231 (2006), 165–181.

  18. 18.

    C. Gutiérrez andR. Rabanal,Injectivity of differentiable maps2 → ℝ2 at infinity. Bull. Braz. Math. Soc. New Series37 (2006), 217–239.

  19. 19.

    C. Gutiérrez andA. Sarmiento,Injectivity of C 1 maps2 → ℝ2 at infinity and planar vector fields, Asterisque,287 (2003), 89–102.

  20. 20.

    Gutiérrez,A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 627–671.

  21. 21.

    C. Gutiérrez andM. A. Teixeira,Asymptotic stability at infinity of planar vector fields, Bull. Braz. Math. Soc. New Series26 (1995) 57–66.

  22. 22.

    P. Hartman, Ordinary differential equations, Jhon Wiley and Sons, Inc., 1973.

  23. 23.

    L. Markus andH. Yamabe,Global stability criteria for differential systems, Osaka Math. J.12 (1960) 305–317.

  24. 24.

    C. Olech,Global phase-portrait of plane autonomous system, Ann. Inst. Fourier (Grenoble),14 fasc. 1, (1964), 87–97.

  25. 25.

    C. Olech, Introduction. New directions in differential equations and dynamical systems, Royal Soc. Edinburgh, 1991.

  26. 26.

    C. Olech,On the global stability of an autonomous system on the plane, Contributions to Differential Equations1 (1963) 389–400.

  27. 27.

    G. Meisters andC. Olech,Solution of the global asymptotic stability Jacobian conjecture for the polynomial case. Analyse mathématique et applications, (1988) 373–381, Gauthier-Villars, Montrouge.

  28. 28.

    S. Nollet andF. Xavief,Global inversion via the Palais-Smale condition, Discrete Contin. Dyn. Syst.8 (2002) 17–28.

  29. 29.

    W. F. Pfeffer,The multidimensional fundamental theorem of calculus, Jur. Austral. Math. Soc. (Series A),43 (1987) 143–170.

  30. 30.

    S. Pinchuck,A counterexample to the strong Jacobian conjecture, Math. Z.217 (1994) 1–4.

  31. 31.

    K. Kurdyka,Injective endomorphisms of real algebraic sets are surjective, Math. Ann.313 (1999) 69–82.

  32. 32.

    A. Parusiński,Topology of injective endomorphisms of real algebraic sets, Math. Ann.328 (2004) 353–372.

  33. 33.

    R. Roussarie, Bifurcation of planar vector fields and Hilbert's sixteenth problem. Progr. Math.164 Birkhäuser Verlag, Basel, 1998.

  34. 34.

    A. G. Sell,On the fundamental theory of ordinary differential equations, J. Differential Equations,1 (1965) 370–392.

  35. 35.

    B. Smyth andF. Xavier,Injectivity of local diffeomorphisms from nearly spectral conditions. J. Differential Equations,130, (1996), 406–414.

  36. 36.

    A. van den Essen, Polynomial automorphisms and the Jacobian conjecture. Progr. Math.190 Birkhäuser Verlag, Basel, 2000.

Download references

Author information

Correspondence to Roland Rabanal.

Additional information

Partially supported by CAPES (Brazil) with grant number BEX-2256/05-3.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rabanal, R. An eigenvalue condition for the injectivity and asymptotic stability at infinity. Qual. Th. Dyn. Syst. 6, 233 (2005). https://doi.org/10.1007/BF02972675

Download citation

Key Words

  • Planar vector fields
  • Asymptotic stability
  • Injectivity