Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The structure of turbulence in pulsatile pipe flows

  • 101 Accesses

  • 4 Citations

Abstract

This paper describes the fundamental feature of pulsatile transitional and fully turbulent pipe flows. First, the effect of pulsation on the behavior of turbulent slugs in the developing region of circular pipe is clarified. Second, the distributions of turbulence intensity and Reynolds shear stress in fully turbulent pulsatile pipe flow are compared with their respective distributions in fully turbulent steady pipe flow. Generation region of turbulence and radial propagation time of the turbulence are determined from these distributions. Finally the turbulence structure in pulsatile pipe flows with and without relaminarization, i. e., reverse transition, is made clear by means of the conditional sampling method based on the four quadrant classification.

This is a preview of subscription content, log in to check access.

Abbreviations

A :

Cross-sectional area of pipe

A 1 :

Velocity amplitude ratio

D :

Pipe diameter=2R

f :

Pulsation frequency

N :

Frequency

R :

Pipe radius

Re ta :

Time-averaged Reynolds\(number = \bar u_{m,ta} \) D/v

t :

Time

Δt :

Time delay\(\{ = (\angle \bar u_{m,os,1} - \angle u'_{rms,os,1} )/\omega \} \)

u m :

Cross-sectional mean velocity

u rms ,v rms ,w rms :

Root mean square values of axial, radial, and tangential turbulence components

u *,ta :

Time-averaged friction velocity

\(\overline {u'v'} \) :

Reynolds shear stress divided by fluid density

x, r, θ:

Axial, radial, tangential coordinates

y :

Distance from wall

y + :

y \(\bar u_{*,ta} /v\)

ν:

Kinematic viscosity

ω:

Angular frequency=2πf

ω+ :

Dimensionless frequency=R 2ω/ν

C :

Central value

g :

Turbulence generation

OS :

Oscillating component

ta :

Time-averaged value

|, ∠:

Amplitude and phase angle

−:

Ensemble averaged value

References

  1. Brodkey, R. S. et al., 1974, J. Fluid Mech., 63-2, p. 209.

  2. Corino, E. R. and Brodkey, R. S., 1969, J. Fluid Mech., 37-1, p. 1.

  3. Hayakawa, M. and Kobashi, Y., 1979, Trans, Jpn. Soc. Mech. Eng. (in Japanese), 45–389, B, p. 46.

  4. Hayakawa, M. and Kobashi, Y., 1979, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 46–411, B, p. 46.

  5. Hayakawa, M. and Nagano, Y., 1981, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 47–413, B, p. 50.

  6. Iguchi, M., 1988, JSME International Journal, Ser, II, 31–4(1988), P. 623.

  7. Iguchi, M. and Miura, H., 1989, JSME International Journal, Ser. II, 32-2, p. 173.

  8. Iguchi, M., Ohmi, M. and Takeuchi, H., 1987, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 53–487, B, p. 706.

  9. Kobashi, Y. and Onji, A., 1964, Technical Report of National Aerospace Laboratory TR-65, p. 1.

  10. Miller, J. A. and Fejer, A. A., 1964, J. Fluid Mech., 18-3, p. 438.

  11. Nakagawa, K., Kobashi, Y. and Hayakawa, M., 1977, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 43–367, p. 1005.

  12. Nakagawa, K., Kobashi, Y. and Hayakawa, M., 1978, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 44–388, B, P. 4206.

  13. Obremski, H. J. and Fejer, A. A., 1967, J. Fluid Mech., 29-1, p. 93.

  14. Obremski, H. J. and Morkovin, M. V., 1969, AIAA J., 7-7, p. 1298.

  15. Ohmi, M. and Iguchi, M., 1981, Trans. Jpn. Soc. Mech. Eng. (in Japanese), 48–430, B, p. 981.

  16. Oka, S., 1984, Biorheology, Syokabo Book Co., Tokyo.

  17. Sexl, T., Z. 1930–5, Phys., 61-1/7, p. 349.

  18. Tellonis, D. P., 1981, Unsteady Viscous Flows, Springer-Verlag, New York.

Download references

Author information

Correspondence to Manabu Iguchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iguchi, M., Park, G. & Koh, Y. The structure of turbulence in pulsatile pipe flows. KSME Journal 7, 185–193 (1993). https://doi.org/10.1007/BF02970963

Download citation

Key Words

  • Unsteady Flow
  • Pulsatile Pipe Flow
  • Turbulent Slug
  • Turbulence Structure
  • Conditional Sampling
  • Relaminarization