Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Studies on cardio-suppressant, vasodilator and tracheal relaxant effects ofSarcococca saligna

Abstract

Sarcococca saligna is a shrub that is traditionally used for its medicinal properties in Pakistan. In this study we report the cardio-suppressant, vasodilator and tracheal relaxant activities of the aqueous-methanolic extract (Ss.Cr) of the plant. Ss.Cr, that tested positive for the presence of saponins, flavonoids, tannins, phenols, and alkaloids, exhibited a dose-dependent (0.3–5 mg/mL) negative inotropic and chronotropic effect on the isolated guinea-pig atrium which was resistant to atropine (1 μM) and aminophylline (10 μM) pretreatment. In rabbit thoracic aorta, Ss.Cr dose-dependently (0.1–3 mg/mL) relaxed the high K+ (80 mM) and phenylephrine (PE, 1 μM)-induced contractions, indicating a possible Ca++ channel blocking (CCB) effect. When tested against PE (1 μM) control peaks in normal Ca++ and Ca++-free Kreb's solution, Ss.Cr exhibited dose-dependent (0.1–3 mg/mL) inhibition, being more potent in relaxing the PE responses in Ca++-free Kreb's solution, thus indicating specific blockade of Ca++ release from the intracellular stores. Ss.Cr also relaxed the agonist-induced contractions in: a) rat aorta irrespective of the presence of endothelium or nitric oxide synthase inhibitor L-NAME and b) rabbit and guinea-pig tracheal strips. The data shows that Ss.Cr possesses possible Ca++ channel blocking activity which might be responsible for its observed cardio-suppressant, vasodilator and tracheal relaxant effects though more tests are required to confirm this Ca++ channel blocking effect.

This is a preview of subscription content, log in to check access.

References

  1. Ajay, M., Gilani, A. H., and Mustafa, M. R., Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta.Life Sci., 74, 603–612 (2003).

  2. Arunlakhshana, O. and Schild, H. O., Some quantitative uses of drug antagonists.Br. J. Pharmacol., 14, 48–58 (1959).

  3. Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery.J. Physiol., 371, 45–67 (1986).

  4. Fredholm, B. B. and Persson, C. G., Xanthine derivatives as adenosine receptor antagonists.Eur. J. Pharmacol., 81, 673–676 (1982).

  5. Furchgott, R. F. and Zawadski, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature, 299, 373–376 (1980).

  6. Gilani, A. H. and Cobbin, L. B., Cardioselectivity of himbacine: a muscarinic receptor antagonist.Naunyn-Schmiedeberg's Arch. Pharmacol., 332, 16–20 (1986).

  7. Gilani, A. H., Ghayur, M. N., Khalid, A., Haq, Z., Choudhary, M. I., and Rahman, A., The presence of antispasmodic, antidiarrhoeal, antisecretory and acetylcholinesterase inhibitory constituents inSarcococca saligna.Planta Med., 71, 120–125 (2005).

  8. Gilani, A. H., Shaheen, F., and Saeed, S. A., Cardiovascular actions ofDaucus carota.Arch. Pharmacal Res., 17, 150–153 (1994).

  9. Guan, Y. Y., Kwan, C. Y., and Daniel, E. E., The effects of EGTA on vascular smooth muscle contractility in calcium free medium.Can. J. Physiol. Pharmacol., 66, 1053–1056 (1988).

  10. Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y., and Kuriyama, H., Inositol 1,4,5-triphosphate activates pharmaco-mechanical coupling in smooth muscle of rabbit mesenteric artery.J. Physiol., 370, 605–618, (1986).

  11. Kamei, J. and Kasuya, Y., Antitussive effects of Ca++ channel antagonists.Eur. J. Pharmacol., 212, 61–66 (1992).

  12. Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto, S., Nakazawa, H., Won, K. J., and Sato, K., Calcium movements, distribution, and functions in smooth muscle.Pharmacol. Rev., 49, 157–230 (1997).

  13. Kirtikar, K. R. and Basu, B. D., Indian Medicinal Plants. Prabasi Press, Calcutta, pp. 2211–2212 (1933).

  14. Knekt, P., Jarvinen, R., Reunanen, A., and Maatela, J., Flavonoid intake and coronary mortality in Finland: a comparative study.Br. Med. J., 312, 478–481 (1996).

  15. Kohli, J. M., Zaman, A., and Kidwai, A. R., Separation and characterization of the alkaloids ofSarcococca pruniformis.Tetrahedron, 23, 3829–3835 (1967).

  16. Miana, G. A. and Kaimuddin, M., Alkaloids ofSarcococca saligna Muel: salignine.Pak. J. Sci. Ind. Res., 12, 161–163 (1969).

  17. NRC (National Research Council), Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C., pp. 1–7 (1996).

  18. Qiu, M. H., Nie, R. L., and Li, R., Chemical structures and bioactive screening ofPachysandra alkaloids.Yunnan Zhiwu Yanjiu, 16, 296–300 (1994).

  19. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., and Choudhary, M. I., Two new pregnane-type steroidal alkaloids fromSarcococca saligna.Phytochemistry, 46, 771–775 (1997).

  20. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., and Choudhary, M. I., Phytochemical studies on steroidal alkaloids ofSarcococca saligna.Nat. Prod. Lett., 11, 297–304 (1998).

  21. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., Perveen, Z., and Choudhary, M. I., Antibacterial steroidal alkaloids fromSarcococca saligna.J. Nat. Prod., 61, 202–206 (1998a).

  22. Rahman, A., Choudhary, M. I., Khan, M. R., Anjum, S., Farooq, A., and Iqbal, M. Z., New steroidal alkaloids fromSarcococca saligna.J. Nat. Prod., 63, 1364–1368 (2000).

  23. Rahman, A., Feroz, F., Haq, Z., Nawaz, S. A., Khan, M. R., and Choudhary, M. I., New steroidal alkaloids fromSarcococca saligna.Nat. Prod. Res., 17, 235–241 (2003).

  24. Shinwari, Z. K., Khan, A. A., and Nakaike, T., Medicinal and Other Useful Plants of District Swat Pakistan. Al-Aziz Communications, Peshawar, pp. 97–98 (2003).

  25. Taggart, M. J., Menice, C. B., Morgan, K. G., and Wray, S., Effects of metabolic inhibition on intracellular Ca++, phosphorylation of myosin regulatory light chain and force in rat smooth muscle.J. Physiol., 499, 485–496 (1997).

  26. Thorin, E., Huang, P. L., Fishman, M. C., and Bevan, J. A., Nitric oxide inhibits alpha2-adrenoceptor-mediated endothelium-dependent vasodilation.Circ. Res., 82, 1323–1329 (1998).

  27. Tona, L., Kambu, K., Ngimbi, N., Cimanga, K., and Vlietinck, A. J., Antiamoebic and phytochemical screening of some Congolese medicinal plants.J. Ethnopharmacol., 61, 57–65 (1998).

  28. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M., and Houston, D. S., Modulation of vascular smooth muscle contraction by endothelium.Ann. Rev. Physiol., 48, 307–330 (1986).

Download references

Author information

Correspondence to Anwarul Hassan Gilani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghayur, M.N., Gilani, A.H. Studies on cardio-suppressant, vasodilator and tracheal relaxant effects ofSarcococca saligna . Arch Pharm Res 29, 990 (2006). https://doi.org/10.1007/BF02969283

Download citation

Key words

  • Sarcococca saligna
  • Intracellular Ca++ release inhibitor
  • Cardio-suppressant
  • Vasodilator
  • Tracheal relaxant