Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Artemisolide fromArtemisia asiatica: Nuclear Factor-κB (NF-κB) inhibitor suppressing prostaglandin E2 and nitric oxide production in macrophages

  • 146 Accesses

  • 22 Citations

Abstract

Aerial parts ofArtemisia asiatica (Compositae) have been traditionally used as an oriental medicine for the treatment of inflammatory and ulcerogenic diseases. In the present study, artemisolide was isolated as a nuclear factor (NF)-κB inhibitor fromA. asiatica by activity-guided fractionation. Artemisolide inhibited NF-κB transcriptional activity in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an IC50 value of 5.8 μM. The compound was also effective in blocking NF-κB transcriptional activities elicited by the expression vector encoding the NF-κB p65 or p50 subunits bypassing the inhibitory kB degradation signaling NF-κB activation. The macrophages markedly increased their PGE2 and NO production upon exposure to LPS alone. Artemisolide inhibited LPS-induced PGE2 and NO production with IC50 values of 8.7 μM and 6.4 μM, respectively, but also suppressed LPS-induced synthesis of cyclooxygenase (COX)-2 or inducible NO synthase (iNOS). Taken together, artemisolide is a NF-κB inhibitor that attenuates LPS-induced production of PGE2 or NOvia down-regulation of COX-2 or iNOS expression in macrophages RAW 264.7. Therefore, artemisolide could represent and provide the anti-inflammatory principle associated with the traditional medicine,A. asiatica.

This is a preview of subscription content, log in to check access.

References

  1. Akira, S., Toll-like receptors and innate immunity.Adv. Immunol., 78, 1–56 (2001).

  2. Archer, S., Measurement of nitric oxide in biological models.FASEB J. 7, 349–360 (1993).

  3. Baeuerle, P. A. and Baltimore, D., NF-κB: ten years after.Cell, 87, 13–20 (1996).

  4. Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A., and Baldwin, A. S. Jr., IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention.Genes Dev., 6, 1899–1913 (1992).

  5. Blantz, R. C. and Munger, K., Role of nitric oxide in inflammatory conditions.Nephron, 90, 373–378 (2002).

  6. Foglio, M. A., Dias, P. C., Antonio, M. A., Possenti, A., Rodrigues, R. A., da Silva, E. F., Rehder, V. L., and de Carvalho, J. E., Antiulcerogenic activity of some sesquiterpene lactones isolated fromArtemisia annua.Planta Med., 68, 515–518 (2002).

  7. Garcia-Pineres, A. J., Castro, V., Mora, G., Schmidt, T. J., Strunck, E., Pahl, H. L., and Merfort, I., Cysteine 38 in p65/NF-κB plays a crucial role in DNA binding inhibition by sesquiterpene lactones.J. Biol. Chem., 276, 39713–39720 (2001).

  8. Garcia-Pineres, A. J., Lindenmeyer, M. T., and Merfort, I., Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide andN-ethyl maleimide, and on its transactivating potential.Life Sci., 75, 841–856 (2004).

  9. Guha, M. and Mackman, N., LPS induction of gene expression in human monocytes,Cell. Signal., 13, 85–94 (2001).

  10. Hehner, S. P., Hofmann, T. G., Droge, W., and Schmitz, M. L., The anti-inflammatory sesquiterpene lactone parthenolide inhibits NF-κB by targeting the lkB kinase complex.J. Immunol., 163, 5617–5623 (1999).

  11. Ignarro, L. J., Nitric oxide as a unique signaling molecule in the vascular system: a historical overview.J. Physiol. Pharmacol., 53, 503–514 (2002).

  12. Jin, H. Z., Lee, J. H., Lee, D., Hong, Y.S., Kim, Y.H., and Lee, J.J., Inhibitors of the LPS-induced NF-κB activation fromArtemisia sylvatica Phytochemistry, 65, 2247–2253 (2004).

  13. Israel, A., The IKK complex: an integrator of all signals that activate NF-κB?Trends Cell Biol., 10, 129–133 (2000).

  14. Kim, J. H., Kim, H. K., Jeon, S. B., Son, K. H., Kim, E. H., Kang, S. K., Sung, N. D., and Kwon, B. M., New sesquiterpenemonoterpene lactone, artemisolide, isolated fromArtemisia argyi.Tetrahedron Lett., 43, 6205–6208 (2002).

  15. Kim, S. H., Lee, S. D., Kim, W. B., Lee, M. G., and Kim, N. D., Determination of a new antiulcer agent, eupatilin, in rat plasma, bile, urine, and liver homogenate by high-performance liquid chromatography.Res. Commun. Mol. Pathol. Pharmacol., 97, 165–170 (1997).

  16. Koshihara, Y., Neichi, T., Murota, S., Lao, A., Fujimoto, Y. and Tatsuno, T., Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants,Artemisia rubripes Nakai.FEBS Lett., 158, 41–44 (1983).

  17. MacMicking, J., Xie, Q. W., and Nathan, C., Nitric oxide and macrophage function.Ann. Rev. Immunol., 15, 323–350 (1997).

  18. Magnani, M., Crinelli, R., Bianchi, M., and Antonelli, A., The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-κB (NF-κB).Curr. Drug Targets., 1, 387–399 (2000).

  19. Moon, K. Y., Hahn, B. S., Lee, J., and Kim, Y. S., A cell-based assay system for monitoring NF-κB activity in human HaCat transfectant cells.Anal. Biochem., 292, 17–21 (2001).

  20. Needleman, P. and Isakson, P. C., The discovery and function of COX-2.J. Rheumatol., 49, 6–8 (1997).

  21. Prast, H. and Philippu, A., Nitric oxide as modulator of neuronal function.Prog. Neurobiol., 64, 51–68 (2001).

  22. Reddy, A. M., Seo, J. H., Ryu, S. Y., Kim, Y. S., Min, K. R., and Kim, Y., Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-κB inhibitors fromCinnamomum cassia.Planta Med., 70, 823–827 (2004).

  23. Schmidt, T. J., Helenanolide-type sesquiterpene lactones. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules.Bioorg. Med. Chem. 15, 645–653 (1997).

  24. Seo, H.-J., Park, K.-K., Han, S. S., Chung, W.-Y., Son, M.-W., Kim, W.-B., and Surh, Y.-J., Inhibitory effects of the standardized extract (DA-9601) ofArtemisia asiatica Nakai on phorbol ester-induced ornithine decarboxyase activity, papilloma formation, cyclooxygenase-2 expression, inducible nitric oxide synhtase expression and nuclear transcription factor kB activation in mouse skin.Int. J. Cancer, 100, 456–462 (2002).

  25. Tegeder, I., Pfeilschifter, J., and Geisslinger, G., Cyclooxygenase-independent actions of cyclooxygenase inhibitors.FASEB J., 15, 2057–2072 (2001).

  26. Tian, B. and Brasier, A. R., Identification of a nuclear factor kB-dependent gene network,Recent Prog. Horm. Res., 58, 95–130 (2003).

  27. Vane, J. R., Bakhle, Y. S., and Botting, R. M., Cyclooxygenases 1 and 2.Ann. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

  28. Vane, J. R. and Botting, R. M., Anti-inflammatory drugs and their mechanism of action.Inflamm. Res., 47, S78-S87 (1998).

  29. Stalinska, K., Guzdek, A., Rokicki, M., and Koj, A., Transcription factors as targets of the anti-inflammatory treatment: a cell culture study with extracts from some Mediterranean diet plants.J. Physiol. Pharmacol., 56, 157–169 (2005).

Download references

Author information

Correspondence to Youngsoo Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reddy, A.M., Lee, J., Seo, J.H. et al. Artemisolide fromArtemisia asiatica: Nuclear Factor-κB (NF-κB) inhibitor suppressing prostaglandin E2 and nitric oxide production in macrophages. Arch Pharm Res 29, 591–597 (2006). https://doi.org/10.1007/BF02969271

Download citation

Key words

  • Artemisolide
  • Artemisia asiatica
  • Nuclear factor-κB
  • Prostaglandin E2
  • Nitric oxide
  • Macrophages