Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The molecular mechanism underlying the acquisition of the antiestrogen-resistant phenotype in breast cancer

  • 26 Accesses


Breast cancer is thought to develope as an estrogen-dependent tumor. Approximately 30% of breast cancers can be treated by agents that block estrogen. However, all breast cancers have been known to acquire the hormone therapy-resistant phenotype with ultimate fatal results. Recent progress in breast cancer research has provided the important clues for elucidating the molecular mechanism of this conversion. The presence of the cross-talk between estrogen signaling and other mitogen-dependent signaling has been clarified at the estrogen receptor level. In addition, an estrogen-dependent transcriptional control mechanism has been characterized in detail. These breakthrough and the development of a pure antiestrogen would make it possible to consider the more sophisticated hormone therapy. In this review article, I summarized the current findings which seem to be essential in the treatment of breast cancer.

This is a preview of subscription content, log in to check access.



Estradiol-1 7ß


Estrogen receptor


CREB binding protein


Estrogen responsive element




Transforming growth factor


Epidermal growth factor


Fibroblast growth factor

IGF 1:

Insulin-like growth factor 1


Cyclin-dependent kinase


  1. 1)

    Lang R, Reimann R: Studies for a genotoxic potential of some endogenous and exogenous sex steroids, I; Communication; Examination of gene mutation using the Ames salmonella/microsome test and the HGPRT test in V79 cells.Environ Mol Mutagen 21:272–304, 1993.

  2. 2)

    Rose C, Thorpe SM, Anderson KW,et al: Beneficial effect of adjuvant tamoxifen therapy in primary breast cancer patients with high oestrogen receptor values.Lancet 1:16–19, 1985.

  3. 3)

    Wakeling AE, Dukes M, Bowler J: A potent specific pure antiestrogen with clinical potential.Cancer Res 51:3867–3873, 1991.

  4. 4)

    Gottardis MM, Jiang SY, Jeng MH,et al: Inhibition of tamoxifen-stimulated growth of a MCF-7 variant in athymic mice by novel steroidal antiestrogens.Cancer Res 49:4090–4093, 1989.

  5. 5)

    Halachmi S, Marden E, Martin G,et al: Estrogen receptor-associated proteins; Possible mediators of hormone-induced transcription.Science 264:1455–1458, 1994.

  6. 6)

    Onate SA, Tsai SY, Tsai M-J,et al: Scequence and characterization of a coactivator for the steroid hormone receptor superfamily.Science 270:1354–1357, 1995.

  7. 7)

    Horwitz KB, Jackson TA, Bain DL,et al: Nuclear receptor coactivators and corepressor.Mol Endocrinol 10:1167–1177, 1996.

  8. 8)

    Heery DM, Kalhoven E, Hoare S,et al: A signature motif in transcriptional co-activators mediates binding to nuclear receptors.Nature 387:733–736, 1997.

  9. 9)

    Kamei Y, Xu L, Heinzel T,et al: A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors.Cell 85:403–414, 1996.

  10. 10)

    Chakvararti D, LaMorte VJ, Nelson MC,et al: Role of CBP/P300 in nuclear receptor signalling.Nature 383:99–103, 1996.

  11. 11)

    Chrivia JC, Kwob RPS, Lamb N,et al: Phosphorylated CREB binds specifically to the nuclear protein CBP.Nature 365:855–859, 1993.

  12. 12)

    Bannister AJ, Kouzarides T: CBP-induced stimulation of c-Fos activity is abrogated by EIA.EMBO J 14:4758–4762, 1995.

  13. 13)

    Bhattacharya S, Eckner R, Grossman S,et al: Cooperation of Stat 2 and P300/CBP in signalling induced by interferone-α.Nature 383:344–347, 1996.

  14. 14)

    Torchia J, Rose DW, Inostroza J,et al: The transcriptional co-activator p/CIP binds CBP and mediates nuclear receptor function.Nature 387:677–684, 1997.

  15. 15)

    Anzick S, Kononen J, Walker RL,et al: AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer.Science 277:965–968, 1997.

  16. 16)

    Kuiper GGJM, Enmark E, Pelto-Huikko M,et al: Cloning of a novel estrogen receptor expressed in rat prostate and ovary.Proc Natl Acad Sci USA 93:5925–5930, 1996.

  17. 17)

    Paech K, Webb P, Kuiper GGJM,et al: Differential ligand activation of estrogen receptors ERα and ERß at AP1 sites.Science 277:1508–1510, 1997.

  18. 18)

    Dotzlaw H, Leygue E, Watson PH,et al: Expression of estrogen receptor-beta in human breast tumors.J Clin Endocrinol Metab 82:2371–2374, 1996.

  19. 19)

    Smith CL, Conneely DM, O’Malley BW: Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone.Proc Natl Acad Sci USA 90:6120–6124, 1993.

  20. 20)

    Kato S, Endoh H, Masuhiro Y,et al: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase.Science 270:1491–1494, 1995.

  21. 21)

    Mohammed K, El-Tanani K, Green CD: Two separate mechanisms for ligand-independent activation of the estrogen receptor.Mol Endocrinol 11:928–937, 1997.

  22. 22)

    Fuqua SAM, Chamness GC, McGuire WL: Estrogen receptor mutations in breast cancer.J Cell Biochem 51:135–139, 1993.

  23. 23)

    Pfeffer U, Fecarotta E, Vidali G: Coexpression of multiple estrogen receptor variant messenger RNAs in normal and neoplastic breast tissues and in MCF-7 cells.Cancer Res 55:2158–2165, 1995.

  24. 24)

    Zhang Q-X, Borg A, Wolf DM,et al: An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer.Cancer Res 57:1244–1249, 1997.

  25. 25)

    Lippman ME, Dickson RB: Mechanism of growth control in normal and malignant breast epithelium.Recent Prog Horm Res 45:383–440, 1989.

  26. 26)

    Harris JR, Lippman ME, Veronesi U,et al: Breast Cancer.N Engl J Med 327:473–480, 1992.

  27. 27)

    Kouhara H, Kurebayashi S, Hashimoto K,et al: Ligand-independent activation of tyrosine kinase in fibroblast growth factor receptor 1 by fusion with ß-galactosidase.Oncogene 10:2315–2322, 1995.

  28. 28)

    Knabbe C, Lippman ME, Wakefield LM,et al: Evidence that transforming growth factor-beta is hormonally regulated negative growth factor in human breast cancer cells.Cell 48:417–428, 1987.

  29. 29)

    Koga M, Kasayama S, Matsumoto K,et al: Minireview; Molecular mechanism of androgen-dependent growth in transformed cells; Pathway from basic science to clinical application.J Steroid Biochem Mol Biol 54:1–6, 1995.

  30. 30)

    Miyashita Y, Koga M, Kouhara H,et al: Facilitation of autonomous phenotype acquisition in androgen-dependent Shionogi carcinoma 115 cells by transfection of androgen-induced growth factor expression vector.Jpn J Cancer Res 85:1117–1123, 1994.

  31. 31)

    Kasayama S, Koga M, Kouhara H,et al: Unsaturated fatty acids are required for continuous proliferation of transformed androgen-dependent cells by fibroblast growth factor family proteins.Cancer Res 54:6441–6445, 1994.

  32. 32)

    Esteban JM, Warsi Z, Haniu M,et al: Detection of intratumor aromatase in breast carcinomas, an immunohistochemical study with clinicopathologic correlation.J Am Pathol 140:337–343, 1992.

  33. 33)

    Weinberg RA: The retinoblastoma protein and cell cycle control [review].Cell 81:323–330, 1995.

  34. 34)

    Bartkova J, Lukas J, Muller H,et al: Cyclin Dl protein expression and function in human breast cancer.Int J Cancer 57:353–361, 1994.

  35. 35)

    Renate M, Zwijsen L, Weientjens E,et al: CDK-independent activation of estrogen receptor by cyclin Dl.Cell 88:405–415, 1997.

  36. 36)

    Wilcken NRC, Prall OWJ, Musgrove EA,et al: Inducible overexpression of cyclin Dl in breast cancer cells reverses the growth-inhibitory effects of antiestrogens.Clin Cancer Res 3:849–854, 1997.

  37. 37)

    Dauvois S, Danielian PS, White R,et al: Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover.Proc Natl Acad Sci USA 89:4037–4041, 1992.

  38. 38)

    Nonomura N, Nakamura N, Uchida N,et al: Growth-stimulatory effect of androgen-induced autocrine growth factor(s) secreted from Shionogi carcinoma 115 cells on androgen-unresponsive cancer cells in a paracrine mechanism.Cancer Res 48:4904–4908, 1988.

  39. 39)

    Ottaviano YL, Issa JP, Parl FF,et al: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells.Cancer Res 54:2552–2555, 1994.

  40. 40)

    Nishizawa Y, Sato B, Miyashita Y,et al: Autocrine regulation of cell proliferation by estradiol and hydroxytamoxifen of trasformed mouse Leydig cells in serum-free culture.Endocrinology 122:227–235, 1988.

  41. 41)

    Horlein AJ, Naar AM, Heinzel T,et al: Ligand-independent repression by the thyroid receptor mediated by a nuclear receptor co-repressor.Nature 377:397–403, 1995.

  42. 42)

    Chen JD, Evans RM: A transcriptional co-repressor that interacts with nuclear hormone receptors.Nature 377:454–457, 1995.

  43. 43)

    Smith CL, Nawaz Z, O’Malley BW: Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen.Mol Endocrinol 11:657–666, 1997.

  44. 44)

    Jackson TA, Richer JK, Bain DL,et al: The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT.Mol Endocrinol 11:693–705, 1997.

  45. 45)

    Johnston SRD, Haynes BP, Smith IE,et al: Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration.Lancet 342:1521–1522, 1993.

  46. 46)

    Pyrhonen S: Phase III studies of tremifene in metastatic breast cancer.Breast Cancer Res Tret 16 (suppl):41–46, 1990.

Download references

Author information

Correspondence to Bunzo Sato.

About this article

Cite this article

Sato, B. The molecular mechanism underlying the acquisition of the antiestrogen-resistant phenotype in breast cancer. Breast Cancer 5, 25 (1998). https://doi.org/10.1007/BF02967412

Download citation


  • Estrogen action
  • Cyclin D1
  • Growth factors
  • Antiestrogen
  • Hormone resistance