Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Epidural perfusion cooling protects against spinal cord ischemia in rabbits

An evaluation of cholinergic function


The protective effect of regional epidural spinal cord cooling was evaluated in a rabbit spinal cord ischemia model. Hypothermia was performed by the continual perfusion of 2–4°C cold saline in the epidural space around the ischemic lumbar segments, 4 min before and during ischemia. The spinal cord was deeply hypothermic (21°C) throughout the whole ischemie period. Ischemia was induced by the occlusion of the abdominal aorta for 40 min under normothermic or hypothermie conditions. Recovery of motor and sensory functions, spinal cord-evoked potentials, and motor-evoked potentials were then evaluated up to 24 h postischemia. After this period, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were measured, in particular, zones of the lumbar spinal cord. AChE was also investigated histochemically.

Animals in the normothermic group displayed fully developed spastic paraplegia with near complete loss of spinal somatosensory and motor-evoked potentials. AChE histochemistry showed extensive necrotic changes affecting lumbosacral gray matter. These changes corresponding with the pronounced losses of ChAT and AChE activities indicated irreversible injury of the spinal cord. In contrast, after hypothermic ischemia, animals survived without any sign of neurological impairment with almost full recovery of the spinal cord-evoked potentials. ChAT and AChE activities in the gray matter showed near control values corresponding with histochemical analysis of fully preserved gray matter. Hypothermia under the present experimental conditions efficiently protected the spinal cord against ischemic injury.

This is a preview of subscription content, log in to check access.


  1. Astrup J., Moller-Sorenson P., and Rahbeck-Sorenson H. (1981) Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital and lidocaine.Anesthesiology 55, 263–268.

  2. Baldwin W. A., Kirsch J. R., Hurn P. D., Toung W. S. P., and Traystman R. J. (1991) Hypothermic cerebral reperfusion and recovery from ischemia.Am. J. Physiol.261, H774-H781.

  3. Berguer R., Porto J., Fedoronko B., and Dragovic L. (1992) Selective deep hypothermia prevents paraplegia after aortic cross-clamping in the dog model.J. Vasc. Surg.15, 62–71.

  4. Bering E. A. (1974) Effect of profound hypothermia and circulatory arrest on cerebral oxygen metabolism and cerebrospinal fluid electrolyte composition in dogs.J. Neurosurg.39, 199–205.

  5. Berntman L., Welsh F. A., and Harp J. R. (1981) Cerebral protective effect of lowgrade hypothermia.Anesthesiology 5, 495–498.

  6. Busto R., Globus M. Y., Dietrick W. D., Martinez E., Valdéz I., and Ginsberg M. D. (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.Stroke 20, 904–910.

  7. Cardell M., Boris-Moller F., and Wieloch, T. (1991) Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum.J. Neurochem.57, 1814–1817.

  8. Cheng M-K., Robertson C., Grossman R. G., Foltz R., and Williams V. (1984) Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model.J. Neurosurg.60, 786–795.

  9. Chopp M., Knight R., Tidwell C. D., Helpern J. A., Brown E., and Welch K. M. A. (1989) The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: Comparison to normothermia and hyperthermia.J. Cereb. Blood Flow. Metab.9, 141–148.

  10. Coles J. G., Wilson G. J., Sima A. F., Klement P., Tait G. A., Williams W. G., and Baird R. J. (1983) Intraoperative management of thoracic aortic aneurysm.J. Thorac. Cardiovasc. Surg.85, 292–299.

  11. Colon R., Frazier O. H., Cooley D. A., and McAllister H. A. (1987) Hypothermic regional perfusion for protection of the spinal cord during periods of ischemia.Ann. Thorac. Surg.43, 639–643.

  12. DeGirolami U. and Zivin J. A. (1982) Neuropathology of experimental spinal cord ischemia in the rabbit.J. Neuropathol. Exp. Neurol.41, 129–149.

  13. Fonnum F. (1969) Radiochemical micro-assays for the determination of choline acetyltransferase and acetylcholinesterase activities.Biochem. J.115, 465–472.

  14. Halát G., Chavko M., Lukáčová N., Kluchová D., and Maršala J. (1989) Effect of partial ischemia on phospholipids and postischemic lipid peroxidation in rabbit spinal cord.Neurochem. Res.14, 1089–1097.

  15. Hansebout R. R., Tanner J. A., and Romero-Sierra C. (1984) Current status of spinal cord cooling in the treatment of acute spinal cord injury.Spine 9, 508–511.

  16. Jacobs T. P., Shoami E., Baze W., Burgard E., Gunderson C., Hallenbeck J. M., and Feuerstein G. (1987) Deteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbit.Stroke 18, 741–750.

  17. Karnovsky M. J. and Roots L. (1964) A direct-coloring thiocholine method for cholinesterase.J. Histochem. Cytochem.12, 219–221.

  18. Kirshner D. L., Kirshner R. L., Heggeness L. M., and DeWeese J. A. (1989) Spinal cord ischemia: An evaluation of pharmacological agents in minimizing paraplegia after aortic occlusion.J. Vasc. Surg.9, 305–308.

  19. Leonov Y., Sterz F., Safar P., Radovsky A., Oku K., Tisherman S., and Stezoski S. W. (1990) Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs.J. Cereb. Blood Flow Metab.10, 57–70.

  20. LeMay D. R., Neal S., Zelenock G. B., and D’Alecy L. G. (1987) Paraplegia in the rat induced by aortic cross clamping: model characterization and glucose exacerbation of neurological deficit.J. Vasc. Surg.6, 383–390.

  21. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem.193, 265–275.

  22. Lucas J. H., Wang G., and Gross G. W. (1990) NMDA antagonists prevent hypothermic injury and death of mammalian spinal neurons.J. Neurotrauma 7, 229–236.

  23. Malatová Z., Chavko M., and Maršala J. (1989) Effect of spinal cord ischemia on axonal transport of cholinergic enzymes in rabbit sciatic nerve.Brain Res.481, 31–38.

  24. Malatová Z. and Maršala J. (1993) Cholinergic enzymes in spinal cord infarction: biochemical and histochemical changes.Mol. Chem. Neuropathol.19, 283–296.

  25. Maršala J., Sulla I., Santa M., Marsala M., Zacharias L., and Radonak J. (1991) Mapping of the canine lumbosacral spinal cord neurons by Nauta method at the end of the early phase of paraplegia induced by ischemia and reperfusion.Neuroscience 45, 479–494.

  26. Marsala M., Vanický I., Gálik J., Radonák J., Kundrát I., and Maršala J. (1993) Panmyelic epidural cooling protects against postischemic spinal cord damage.J. Surg. Res.55, 21–31

  27. Maršala M., Sorkin L. S., and Yaksh T. L. (1994) Transient spinal cord ischemia in rat: Characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage.J. Cereb. Blood Flow 14, 604–614.

  28. Martiniak J., Saganová K., and Chavko M. (1991) Free and peptide-bound amino acids as indicators of ischemic damage of the rabbit spinal cord.J. Neuropathol. Exp. Neurol.50, 73–81.

  29. Moller F. B., Smith M. L., and Siesjo B. K. (1989) Effect of hypothermia on ischemic brain damage: a comparison between preischemic and postischemic cooling.Neurosci. Res. Commun.5, 87–94.

  30. Negrin J. (1973) Spinal cord hypothermia in the neurosurgical management of the acute and chronic post-traumatic paraplegic patient.Paraplegia 10, 336–343.

  31. Perna A. M., Gardner T. J., Tabaddor K., Brawley R. K., and Gott V. L. (1973) Cerebral metabolism and blood flow after circulatory arrest during deep hypothermia.Ann. Surg.178, 95–101.

  32. Robertson C. S., Foltz R., Grossman R. G., and Goodman J. C. (1986) Protection against experimental ischemic spinal cord injury.J. Neurosurg.64, 633–642.

  33. Salzano R. P., Ellison L. H., Altonji P. F., Richter J., and Deckers P. J. (1994) Regional deep hypothermia of the spinal cord protects against ischemic injury during thoracic aortic cross-clamping.Ann. Thorac. Surg.57, 65–71.

  34. Shoami E., Jacobs T. P., Hallenbeck J. M., and Feuerstein G. (1990) Increased thromboxane A2 and 5-HETE production following spinal cord ischemia in the rabbit.Prostaglandins Leukotrienes Med.28, 169–181.

  35. Simpson R. K., Robertson C. S., and Goodman J. C. (1990) Spinal cord ischemiainduced elevation of amino acids: extracellular measurement with microdialysis.Neurochem. Res.15, 635–639.

  36. Szilagyi D. E., Hageman J. H., Smith R. F., and Elliot J. P. (1978) Spinal cord damage in surgery of the abdominal aorta.Surgery 83, 38–56.

  37. Vacanti F. X. and Ames A. III (1984) Mild hypothermia and Mg++ protect against irreversible damage during CNS ischemia.Stroke 15, 695–698.

  38. Vanický I., Marsala M., Gálik J., and Maršala J. (1993) Epidural perfusion cooling protects against protracted spinal cord ischemia in rabbit.J. Neurosurg.79, 736–741.

  39. Wisselink W., Becker M. O., Nguyen J. H., and Money S. R. (1994) Protecting the ischemic spinal cord during aortic clamping—the influence of selective hypothermia and spinal cord perfusion pressure.J. Vasc. Surg.19, 788–796.

  40. Zivin J. A., DeGirolami U., and Hurwitz E. L. (1982) Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study.Arch. Neurol.39, 408–412.

Download references

Author information

Correspondence to Zelmira Malatová.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malatová, Z., Vanický, I., Gálik, J. et al. Epidural perfusion cooling protects against spinal cord ischemia in rabbits. Molecular and Chemical Neuropathology 25, 81–96 (1995).

Download citation

Index Entries

  • Spinal cord
  • ischemia
  • paraplegia
  • hypothermia
  • choline acetyltransferase
  • acetylcholinesterase