Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adjacency in generalized projective Veronese spaces

  • 32 Accesses

  • 3 Citations


A bijection of strong subspaces of a generalized Veronese space preserving the adjacency need not to be determined by an automorphism of the underlying space. We give conditions which assure that the adjacency preserving bijection of points (or lines) of a generalized Veronese space is determined by an automorphism of this space. The results are applied to Veronese spaces associated with projective structures.

This is a preview of subscription content, log in to check access.


  1. [1]

    W. -L. Chow, On the geometry of algebraic homogeneous spaces.Ann. of Math. 50 (1949), 32–67.

  2. [2]

    A. Cohen, Point-Line Spaces related to Buildings. In: F. Buekenhout (ed.),Handbook of incidence geometry. Elsevier, 1995, pp. 647–737.

  3. [3]

    J. Dieudonné,La géométrie des groupes classiques. Springer-Verlag, Berlin, 1971.

  4. [4]

    B. Jankowska, M. Prażmowska, and K. Prażmowski, Line graphs, their Desar-guesian closures, and corresponding groups of automorphisms, sent for review.

  5. [5]

    M. Ch. Klin, R. Pöschel, andK. Rosenbaum,Angewandte Algebra für Mathematiker und Informatiker. VEB Deutcher Verlag der Wissenschaften, Berlin 1988.

  6. [6]

    W. Lipski and W. Marek,Analiza kombinatoryczna. PWN, Warszawa, 1986 (in Polish).

  7. [7]

    N. Melone, Veronese spaces.J. Geom. 12 (1983), 167–180.

  8. [8]

    A. Naumowicz andK. Prazmowski, The geometry of generalized Veronese spaces.Result. Math. 45 (2004), 115–136.

  9. [9]

    M. Pankov, K. Prażmowski, andM. Żynel, Transformations preserving adjacency and base subsets in spine spaces.Abh. Math. Sem. Univ. Hamburg 75 (2005), 21–50.

  10. [10]

    —, Geometry of polar Grassmann spaces.Demonstratio Math. 39 (2006), no. 3, 625–637.

  11. [11]

    M. Prażmowska and K. Prażmowski, Combinatorial Veronese structures, their geometry, and problems of embeddability.Result. Math., to appear.

  12. [12]

    M. Prażmowska andK. Prażmowski, Grassmann spaces over hyperbolic and quasi hyperbolic spaces.Math. Pannonica 17/2 (2006), 195–220.

  13. [13]

    K. Prażmowski and M. Żynel, An essay on possible primitive notions for Grass-mannians and related geometries, mimeographed.

  14. [14]

    G. Tallini, Partial linear spaces and algebraic varieties.Symp. Math. 28 (1986), 203–217.

  15. [15]

    R. W. Wilson,Introduction to graph theory. Addison Wesley Longman Limited, 1996.

Download references

Author information

Correspondence to I. Golonko or M. Prazmowska or K. Prażmowski.

Additional information

Communicated by: A. Kreuzer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golonko, I., Prazmowska, M. & Prażmowski, K. Adjacency in generalized projective Veronese spaces. Abh.Math.Semin.Univ.Hambg. 76, 99–114 (2006). https://doi.org/10.1007/BF02960859

Download citation

2000 Mathematics Subject Classification

  • 51M35
  • 51A99

Key words and phrases

  • generalized Veronese space (associated with a partial linear space)
  • Г-space
  • exchange space
  • adjacency
  • clique
  • strong subspace
  • pencils of strong subspaces