Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A quantitative study of the perikaryon and the basal dendritic tree in rat hippocampus (CA1) pyramids following different experimental procedures

  • 18 Accesses

  • 3 Citations


A quantitative study of perikaryon and basal dendritic branching of hippocampal (CA1) neurons in male Wistar rats, in three experimental groups is reported. The groups of animals were exposed to treatment with either a tricyclic antidepressant, or a saline control injection or no handling. The hippocampal tissue was studied following Golgi-Kopsch impregnation and comparative measurements made using semi-automatic image analysis and light microscopy. Measurements of the extent of basal dendritic branching showed a significant difference (p<0.01) between the saline-injected and unhandled control groups. The drug-injected and saline-injected groups had similar values although the drug-injected group did not prove to be significantly different from the unhandled controls. No statistical difference was noted in the perikaryon size of the three experimental groups. These results are discussed with reference to the effects of sensory stimulation on neuronal plasticity.

This is a preview of subscription content, log in to check access.


  1. 1.

    Feldman, M. L. Dendritic changes in aging rat brain: Pyramidal cell dendrite length and ultrastructure. In: AgeingBrain and Senile Dementia. Ed. K. Nandy, I. Sherwin, New York, Plenum Press, 1977: pp. 23–37.

  2. 2.

    Ferrer, I., Guionnet, N., Cruz-Sanchez, F., Tunon, T. Neuronal alterations in patients with senile dementia: a Golgi study on biopsy samples. Neurosci. Lett. 1990:114,11–16.

  3. 3.

    Mussa, G. C., Zaffaroni, M., Mussa, F. Thyroid and growth: thyroid hormones and development of the nervous system. J. Endocrinol. Invest. 1989:12,85–89.

  4. 4.

    Woolley, C. S., Gould, E., Frankfurt, M., McEwen, B. S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 1990:10, 4035–4039.

  5. 5.

    Horner, C. H., O’Regan, M., Arbuthnott, E. Neural plasticity of the hippocampal (CA1) pyramidal cell- quantitative changes in spine density following handling and injection for drug testing. J. Anat. 1991: 174, 229–238.

  6. 6.

    Bryan, G. K., Riesen, A H. Deprived somatosensory-motor experiences in stumptailed monkey neocortex: dendritic spine density and dendritic branching of layer 111 B pyramidal cells. J. Comp. Neurol. 1989:286, 208–217.

  7. 7.

    Schapiro, S., Vukovich, K. R. Early experience effects upon cortical dendrites: a proposed model for development. Science 1970: 167,292–294.

  8. 8.

    Pentney, R. J. Quantitative analysis of ethanol effects on Purkinje cell dendritic tree. Brain Res. 1982: 249, 397–401.

  9. 9.

    Feldman, M. L. Ageing changes in the morphology of cortical dendrites. In: Neurobiology of Ageing. Ed. R. D. Terry, S. Gershon, New York: Raven Press, 1976: pp. 211–227.

  10. 10.

    McConnell, P., Berry, M. The effects of malnutrition on Purkinje cell dendritic growth in the rat. J. Comp. Neurol. 1978: 177, 159–172.

  11. 11.

    Nunzi, M. G., Milan, F., Guidolin, D., Polato, P., Toffano, G. Effects of phosphatidylserine administration of age-related structural changes in the rat hippocampus and septal complex. Pharmacopsychiatry 1989: 22, 125–128.

  12. 12.

    Uylings, H. B. M., Kuypers, K., Diamond, M. C., Veltman, W. A. M. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp. Neurol. 1978: 62, 658–677.

  13. 13.

    Volkmar, F. R., Greenough, W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 1972: 176,1445–1447.

  14. 14.

    Greenough, W. T., Volkmar, F. R. Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp. Neurol. 1973: 40,491–504.

  15. 15.

    Purves, D., Hadley, R. D. Changes in the dendritic branching of adult mammalian neurones revealed by repeated imaging in situ. Nature 1985: 315,404–406.

  16. 16.

    Juraska, J.M., Fitch, J. M., Washburne, D. L. The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. II Effects of gender and environment. Brain Res. 1989:479,115–119.

  17. 17.

    Juraska, J. M. Sex differences in dendritic response to differential experience in the rat visual cortex. Brain Res. 1984: 295, 29–34.

  18. 18.

    Hillman, D. E., Chen, S. Vulnerability of cerebellar development in malnutrition -1. Quantitation of layer volume and neuron numbers. Neuroscience 1981: 6, 1249–1262.

  19. 19.

    Hollister, L. E. Clinical Pharmacology of Psychotherapeutic Drugs (2nd Ed.) New York: Churchill Livingstone, 1983: pp.94

  20. 20.

    Riley, J. N. A reliable Golgi-Kopsch modification. Brain Res. Bull. 1979: 4, 127–129.

  21. 21.

    Snedecor, G. W., Cochran, W. G. Statistical Methods (6th Ed.) Ames, Iowa: Iowa State Univ. Press, 1973.

  22. 22.

    Bradley, P., Berry, M. Quantitative effects of climbing fibre deafferentation on the adult Purkinje cell dendritic tree. Brain Res. 1976: 112, 133–140.

  23. 23.

    Globus, A., Rosenzweig, M. R., Bennett, E. L., Diamond, M. C. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J. Comp. Physiol. Psychol. 1973:82,175–181.

Download references

Author information

Correspondence to C. H. Horner or M. O’Regan or E. Arbuthnott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horner, C.H., O’Regan, M. & Arbuthnott, E. A quantitative study of the perikaryon and the basal dendritic tree in rat hippocampus (CA1) pyramids following different experimental procedures. I.J.M.S. 162, 258 (1993). https://doi.org/10.1007/BF02957574

Download citation


  • Spine Density
  • Pyramidal Cell
  • Dendritic Tree
  • Dendritic Branch
  • Basal Dendrite