Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the positioning of control sources in active noise control of three-dimensional interior space

Abstract

Locations of secondary sources in three-dimensional active noise control influence greatly on final control result. To find efficient secondary source sites for given primary source layout, an acoustic analysis of a three-dimensional interior space is done for low frequency ranges with low modal density. By using the boundary element method, magnitude and phase of optimum velocities of boundaries are evaluated for underdetermined system with an example of a rectangular box. Because the potential energy at mutiple field points depends on boundary velocity field, “good” sites for control sources can be determined by investigating the distribution of resultant velocity vectors. Results show a general tendency that the dipole positioning is most effective and the source should be placed at antinodes of related modes for maximum noise reduction, and this agrees with previous ones. With this method, positions of control sources for maximum noise attenuation can be determined for a variety of primary source configurations and for irregular boundary shapes.

This is a preview of subscription content, log in to check access.

References

  1. Baker, B. B. and Copson, E. T. 1939, The Mathematical Theory of Huygens' Principle, Clarendon Press, Oxford.

  2. Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C., 1984, Boundary Element Techniques, Springer-Verlag, Berlin-Heidelberg.

  3. Bullmore, A. J., Nelson, P. A., Curtis, A. R. D. and Elliott, S. J., 1987, “The Active Minimization of Harmonic Sound Field, Part II: A Computer Simulation”, Journal of Sound and Vibration, Vol. 117, pp. 15–33.

  4. Cunefare, K. A. and Koopmann, G. H., 1991, “A Boundary Element Approach to Optimization of Active Noise Control Sources on Three-Dimensional Structures”, ASME Trans, Journal of Vibration and Acoustics, Vol. 113, pp. 387–394.

  5. Elliott, S. J., Curtis, A. R. D., Bullmore, A. J. and Nelson, P. A., 1987, “The Active Minimization of Harmonic Sound Field, Part III: Experimental Verification”, Journal of Sound and Vibration, Vol. 117, pp. 35–58.

  6. Elliott, S. J., Nelson, P. A., Stothers, I. M., Mcdonald, A. M., Quinn, D. C. and Saunders, T., “The Active Noise Control of Engine Noise inside Cars”, 1988, Proceedings of Inter Noise 88, pp. 987–990.

  7. Elliott, S. J., Nelson, P. A., Stothers, I. M. and Boucher, C. C., 1990, “In-flight Experiments on the Active Control of Propeller-induced Cabin Noise”, Journal of Sound and Vibration, Vol. 140, pp. 219–238.

  8. Elliott, S. J., Joseph, P., Nelson, P. A. and Johnson, M. E. 1991, “Power Output Minimization and Power Absorption in the Active Control of Sound”, Journal of the Acoustical Society of America, Vol. 90, pp. 2501–2512.

  9. Elliott, S. J. and Rex, J., 1992, “Adaptive Algorithms for Underdetermined Active Control Problems”, Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. II, pp. 237–240.

  10. Forsythe, G. E., Malcolm, M. A. and Moler, C. B., 1977, Computer Methods for Mathematical Computations, Prentice Hall, New York.

  11. Guicking, D. and Bronzel, M. 1990, “Multichannel Broadband Active Noise Control in Small Enclosures”, Proceedings of Inter Noise 90, pp. 1255–1258.

  12. Jessel, M. J. M., 1972, “La Question des Absorbeurs Actifs,“ Revue d'Acoustique, Vol. 5, pp. 37–42.

  13. Kanai, H., Abe, M. and Kido, K., 1990, “A New Method to Arrange an Additional Sound Source Used in Active Noise Control”, Acustica, Vol. 70, pp. 258–264.

  14. Mangiante, G. A. 1977, “Active Sound Absorption”, Journal of the Acoustical Society of America, Vol. 61, pp. 1516–1523.

  15. Miyoshi, M. and Kaneda, Y., 1991, “Active Control of Broadband Random Noise in a Reverberant Three-Dimensional Space”, Noise Control Engineering Journal, Vol. 36, pp. 85–89.

  16. Mollo, C.G. and Bernhard, R. J., 1987, “The Optimal Performance of Active Noise Controllers in Three Dimensional Cavities”, SAE Paper 870994.

  17. Mollo, C. G. and Berhard, R. J., 1990, “Numerical Evaluation of the Performance of Active Noise Control Systems”, ASME Trans., Journal of Vibration and Acoustics, Vol. 112, pp. 230–236.

  18. Nelson, P. A., Curtis, A. R. D., Elliott, S. J. and Bullmore, A. J., 1987, “The Minimum Power Output of Free Field Point Sources and the Active Control of Sound”, Journal of Sound and Vibration, Vol. 116, pp. 397–414.

  19. Nelson, P. A., Curtis, A. R. D., Elliott S. J. and Bullmore, A. J., 1987, “The Active Minimization of Harmonic Sound Field, Part I: Theory”, Journal of Sound and Vibration, Vol. 117, pp. 1–13.

  20. Nelson, P. A. and Elliott S. J., 1992, Active Control of Sound, Academic Press, London.

  21. Olson, H. F. and May, E. G., 1953, “Electronic Sound Absorber”, Journal of the Acoustical Society of America, Vol. 25, pp. 1130–1136.

  22. Piraux, J. and Nayroles, B., 1980, “A Theoretical Model for Active Noise Attenuation in Three Dimensional Space”, Proceedings of Inter Noise, 80, pp. 703–706.

  23. Tichy, J., 1991, “Current and Future Issues of Active Noise Control”, Journal of the Acoustical Society of Japan (E), Vol. 12, pp. 255–262.

Download references

Author information

Correspondence to Oh-Sang Kwon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwon, O., Kim, B. & Ih, J. On the positioning of control sources in active noise control of three-dimensional interior space. KSME Journal 8, 283–292 (1994). https://doi.org/10.1007/BF02953357

Download citation

Key Words

  • Active Noise Control
  • Secondary Source
  • Source Position
  • Underdetermined System
  • Acoustic BEM
  • Optimal Velocity Field