Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The characterization of theta functions by functional equations

  • 29 Accesses

  • 11 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J. Aczél andJ. Dhombres.Functional Equations in Several Variables. Cambridge University Press, Cambridge 1989.

  2. [2]

    M. Bonk. On the second part of Hilbert's fifth problem.Math. Z. 210 (1992), 475–493.

  3. [3]

    M. Bonk. The addition theorem of Weierstraß's sigma function.Math. Ann. 298 (1994), 591–610.

  4. [4]

    M. Eichler.Einführung in die Theorie der algebraischen Zahlen und Funktionen. Birkhäuser Verlag, Basel 1963.

  5. [5]

    H. M. Farkas andI. Kra.Riemann Surfaces. Springer-Verlag, Berlin 1980.

  6. [6]

    O. Forster.Riemannsche Flächen. Springer-Verlag, Berlin 1977.

  7. [7]

    H. Hancock.Lectures on the Theory of Elliptic Functions. Dover Publications, Inc., New York 1958.

  8. [8]

    A. Hurwitz andR. Courant.Funktionentheorie. 4. Aufl., Springer-Verlag, Berlin 1964.

  9. [9]

    M. A. Naimark andA. I. Štern.Theory of Group Representations. Springer-Verlag, Berlin 1982.

  10. [10]

    B. Schoeneberg.Elliptic Modular Functions. Springer-Verlag, Berlin 1974.

  11. [11]

    B. L. van der Waerden.Algebra I. 8. Aufl., Springer-Verlag, Berlin 1971.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonk, M. The characterization of theta functions by functional equations. Abh.Math.Semin.Univ.Hambg. 65, 29–55 (1995). https://doi.org/10.1007/BF02953312

Download citation

1991 Mathematics Subject Classification

  • 39 B 30
  • Secondary: 33 A 25