Monte Carlo method applied to the solution of simultaneous linear equations

  • Hirotugu Akaike


Generation Column Matrix Inversion Maximum Eigenvalue Random Digit Simultaneous Linear Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.E. Forsythe, R. A. Leibler, Matrix Inversion by a Monte Carlo Method.M.T.A.C. vol. 4 (1950), pp. 127–129.MathSciNetGoogle Scholar
  2. [2]
    —, NOTES.M.T.A.C. vol. 5 (1951) p. 55.Google Scholar
  3. [3]
    A. Opler, Monte Carlo Matrix Calculation with Punched Card Machines.M.T.A.C. vol. 5 (1951) pp. 115–120.MathSciNetzbMATHGoogle Scholar
  4. [4]
    H. Kahn, T. E. Harris, Estimation of Particle Transmission by Random Sampling.Monte Carlo Method. National Bureau, of Standards Applied Mathematics Series, No. 12 (1951) pp. 27–30.Google Scholar
  5. [5]
    T. E. Harris, Some Mathematical Models for Branching Processes.Proceedings of the 2nd Barkeley Symposium. (1951) pp. 305–328.Google Scholar
  6. [6]
    M.S. Bartlett,An introduction to stochastic processes. Cambridge University press (1955) pp. 39–44.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1955

Authors and Affiliations

  • Hirotugu Akaike
    • 1
  1. 1.The Institute of Statistical MathematicsJapan

Personalised recommendations