Decision rules, based on the distance, for the problems of independence, invariance and two samples

  • Kameo Matusita
  • Hirotugu Akaike


Decision Rule Empirical Distribution Joint Event Risk Function Maximum Eigenvalue 


  1. [1]
    Matusita, Kameo: Decision rules based on the distance to the problems of fit, two samples and estimation.Ann. Math. Stat. Vol. 26 (1955), pp. 631–640.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Matusita, Kameo: On the theory of decision functions,Ann. Inst. Stat. Math. Vol. III (1951), pp. 17–35.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Matusita, Kameo and Hirotugu Akaike: Note on the decision problem,Ann. Inst. Stat. Math. Vol. IV (1952), pp. 11–14.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Cramér, H:Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1946.zbMATHGoogle Scholar
  5. [5]
    Hoeffding, Wassily: A non-parametric test of independence,Ann. Math. Stat. Vol. 19 (1948), pp. 546–557.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hoeffding, Wassily: “Optimum” non-parametric tests,Proc. Second Berkeley Symposium on Math. Stat. and Prob. edited by J. Neyman, University of California Press (1951), pp. S3–92.Google Scholar
  7. [7]
    Lehmann, E.L.: On the theory of some non-parametric hypotheses,Ann. Math. Stat. Vol. 20 (1949), pp. 28–45.CrossRefGoogle Scholar
  8. [8]
    Hotelling, Harold: Some new methods in matrix calculation,Ann. Math. Stat. Vol. 14 (1943), pp. 1–34.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Uspensky, J.V.:Introduction to Mathematical Probability, McGraw-Hill Book Co., Inc., New York, 1937.zbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1955

Authors and Affiliations

  • Kameo Matusita
    • 1
  • Hirotugu Akaike
    • 1
  1. 1.The Institute of Statistical MathematicsJapan

Personalised recommendations