Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The lattice of equational classes ofm-semigroups

  • 22 Accesses

  • 5 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. K. Austin,A closed set of laws which is not generated by a finite set of laws, Quart. J. Math. Oxford (2),17 (1966), 11–13.

  2. [2]

    R. H. Bruck,A survey of binary systems, Springer-Verlag, Berlin-Heidelberg-Göttinger, 1958.

  3. [3]

    S. Burris and E. Nelson,Embedding the dual of π m in the lattice of equational classes of commutative semigroups, Proc. Amer. Math. Soc.30 (1971), 37–39.

  4. [4]

    W. Dörnte,Untersuchen über einen verallgemeinerten Gruppenbegriff, Math. Zeit.29 (1929), 1–19.

  5. [5]

    T. Evans,The lattice of semigroup varieties, Semigroup Forum2 (1971), 1–43.

  6. [6]

    J. Kalicki and D. Scott,Equational completeness of abstract algebras, Indag. Math.17 (1955), 650–659.

  7. [7]

    J. D. Monk and F. M. Sioson,On the general theory of m-groups, Fund. Math.72 (1971), 233–244.

  8. [8]

    E. Nelson,The lattice of equational classes of commutative semigroups, Canad. J. Math.23 (1971), 875–895.

  9. [9]

    P. Perkins,Bases for equational theories of semigroups, J. Algebra11 (1969), 298–314.

  10. [10]

    E. L. Post,Polyadic groups, Trans. Amer. Math. Soc.48 (1940), 208–350.

  11. [11]

    A. Tarski,Equationally complete rings and relation algebras, Indag. Math.18 (1956), 39–46.

Download references

Author information

Correspondence to W. F. Page.

Additional information

National Science Foundation Trainee, University of Miami, grant GZ-2340.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Page, W.F., Butson, A.T. The lattice of equational classes ofm-semigroups. Algebra Univ. 3, 112–126 (1973). https://doi.org/10.1007/BF02945109

Download citation

Keywords

  • Homomorphic Image
  • Commutative Semigroup
  • Equational Classis
  • Small Positive Integer
  • Direct Power