Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gene expression and pattern formation during early embryonic development in amphibians

Abstract

Temporal and spatial gene expression and inductive interactions control the establishment of the body plan during embryogenesis in invertebrates and vertebrates. The best-studied vertebrate model system is the amphibian embryo. Seventy-five years after the famous organizer experiment of Hans Spemann and Hilde Mangold in 1924 our knowledge of the molecular mechanisms of the multi-step formation of embryonic axis has substantially improved. Although in the 30s and 40s the interest of many laboratories was focussed on neural induction (determination of the central nervous system), only crude factors from so-called heterogeneous inducers (liver, bone marrow, etc.,) could be isolated by the traditional biochemical techniques available at this time. An important breakthrough was the characterization and purification of a mesoderm inducing factor, the so-called vegetalizing factor (homologous to Activin) in highly purified from chicken embryos. Much later after the introduction of molecular techniques Vgl and Activin (both belonging to the TGF-β family) and FGFs could be identified as important factors for mesoderm formation. It was in the 90s that secreted neuralizing factors (chordin, noggin, follistatin and cerberus) could be detected, which are expressed at the dorsal side of the early embryo including the Spemann organizer. In contrast to the classical view, these proteins act as antagonists to factors like BMP-4 localized on the ventral side. Of special interest was the fact that inDrosophila sog, homologous to chordin, determines the ventral side, whiledpp, homologous toBMP-4, participates in the formation of the dorsal side. These data of evolutionary conserved genes in both invertebrates and vertebrates support the view that they are descendents of common ancestors, the urbilateralia, living around 300 million years ago. The expression of those genes coding for secreted proteins is closely related to inductive interactions between cells and germ layers. Recently it was shown that planar signals are not sufficient to generate a specific anterior/posterior pattern during the primary steps of neural induction, i.e., formation of the central nervous system in amphibians.

This is a preview of subscription content, log in to check access.

References

  1. Altaba A R I 1992 Planar and Vertical Signals in the Induction and Patterning of theXenopus Nervous System;Development 116 67–80

  2. Anderson K V, Bokla L and Nüsslein-Volhard Ch 1985 Establishment of dorsal-ventral polarity in theDrosophila embryo: The induction of polarity by the toll gene product;Cell 42 791–798

  3. Ariizumi T, Komazaki S and Asashima M 1999 Activin-treated urodele animal caps: II. Inductive interactions in newt animal caps after treatment with Activin A;Zool. Sci. 16 115–124

  4. Ariizumi T, Moriya N, Uchiyama H and Asashima M 1991 Concentration-Dependent Inducing Activity of Activin-A;Roux’s Arch. Dev. Biol. 200 230–233

  5. Asashima M and Grunz H 1983 Effects of inducers on inner and outer gastrula ectoderm layers ofXenopus laevis;Differentiation 23 157–159

  6. Asashima M, Nakano H and Uchiyama H 1990 The vegetalizing factor belongs to a family of mesoderm-inducing proteins related to erylhroid differentiation factor;Naturwissenschaften 77 389–391

  7. Asashima M, Uchiyama H, Nakano H, Eto Y, Ejima D, Sugino H, Davids M, Plessow S, Born J, Hoppe P, Tiedemann H and Tiedemann H 1991 The vegetalizing factor from chicken embryos: its EDF (Activin A)-like activity;Mech. Dev. 34 135–141

  8. Bhushan A, Chen Y and Vale W 1998 Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos;Dev. Biol. 200 260–268

  9. Bouwmeester T, Kim S H, Sasai Y, Lu B and Derobertis E M 1996 Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer;Nature (London) 382 595–601

  10. Chan T C, Ariizumi T and Asashima M 1999 A model system for organ engineering: Transplantation of in vitro induced embryonic kidney;Naturwissenschaften 86 224–227

  11. Chen Y, Hollemann T, Pieler T and Grunz H 1999 Planar signalling is not sufficient to generate a specific anterior/posterior neural pattern in pseudoexogastruale expiants fromXenopus andTriturus;Mech. Dev. (in press)

  12. Cho K W Y, Blumberg B, Steinbeisser H and Derobertis E M 1991 Molecular Nature of Spemanns Organizer — The Role of the Xenopus Homeobox Gene goosecoid;Cell 67 1111–1120

  13. Clement J H, Fettes P, Knöchel S, Lef J and Knöchel W 1995 Bone morphogenetic protein 2 (BMP-2) in the early developmentof Xenopus laevis;Mech. Dev. 52 357–370

  14. Conlon F L, Lyons K M, Takaesu N, Barth K S, Kispert A, Herrmann B and Robertson E J 1994 A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse;Development 120 1919–1928

  15. DeRobertis E M 1997 Evolutionary biology —The ancestry of segmentation;Nature (London) 387 25–26

  16. DeRobertis E M and Sasai Y 1996 A common plan for dorsoventral patterning inBilateria;Nature (London)380 37–40

  17. DeRoos K, Sonneveld E, Compaan P, TenBerge D, Durston A J and van der Saag P T 1999 Expression of retinoic acid 4- hydroxylase (CYP26) during mouse andXenopus laevis embryogenesis;Mech. Dev. 82 205–211

  18. Dohrmann C E, Hemmali-Brivanlou A, Thomsen G H, Fields A, Woolf T M and Melton D A 1993 Expression of Activin Messenger RNA During Early Development inXenopus laevis;Dev. Biol. 157 474–483

  19. Doniach T 1992 Induction of Anteroposterior Neural Pattern inXenopus by Planar Signals;Development (Suppl.) 183–193

  20. Doniach T, Phillips C R and Gerhart J C 1992 Planar induction of antererposterior pattern in the developing central nervous system ofXenopus laevis;Science 257 542–545

  21. Durston A J, Timmermans J P M, Hage W J, Hendriks H F J, DeVries N J, Heideveld M and Nieuwkoop P D 1989 Retinoic acid causes an anteroposterior transformation in the developing central nervous system;Nature (London) 340 140–144

  22. Gehring W 1997 Die genetische Steuerung von Morphogenese und Evolution der Augen;Nova Acta Leopold. 76 303–312

  23. Gerhart J, Danilehik M, Doniach T, Roberts S, Rowning B and Stewart R 1989 Cortical rotation of theXenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development;Development (Suppl.) 107 37–51

  24. Gilbert S F and Saxén L 1993 Spemann’s organizer: models and molecules;Mech. Dev. 41 73–89

  25. Gimlieh R L and Gerhart J C 1984 Early cellular interactions promote embryonic axis formation inXenopus laevis;Dev. Biol. 104 117–130

  26. Glinka A, Wu W, Delhis H, Monaghan A P, Blumenstock C and Niehrs C 1998 Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction;Nature (London) 391 357–362

  27. Green J B A, New H V and Smith J C 1992 Responses of EmbryonicXenopus Cells to Activin and FGF Are Separated by Multiple Dose Thresholds and Correspond to Distinct Axes of the Mesoderm;Cell 71 731–739

  28. Green J B A and Smith J C 1990 Graded Changes in Dose of aXenopus Activin-A Homologue Elicit Stepwise Transitions in Embryonic Cell Fate;Nature (London) 347 391–394

  29. Grunz H 1969 Hemmung der Reaggregation dissoziierter Amphibienzellen durch Inhibitoren der RNS- und Protein- synthese;Roux’s Arch. Dev. Biol. 163 184–196

  30. Grunz H 1970 Abhängigkeit der Kompetenz des Amphibien- Ektoderms von der Proteinsynthese;Roux’s Arch Dev. Biol. 165 91–102

  31. Grunz H 1976 Changes of cell surface and determination of amphibian ectoderm after induction; inProceedings of the Sixth European Congress on Electron Microscopy Jerusalem,Biological Vol. II, 571–573,Biological Vol. II, 571–573 G098

  32. Grunz H 1977 The differentiation of the four animal and the four vegetal blastomeres of the eight-cell-stage ofTriturus alpestris;Roux’s Arch. Dev. Biol. 181 267–277

  33. Grunz H 1979 Change of the differentiation pattern of amphibian ectoderm after the increase of the initial cell mass;Roux’s Arch. Dev. Biol. 187 49–57

  34. Grunz H 1983 Change in the differentiation pattern ofXenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor;Roux’s, Arch. Dev. Biol. 192 130–137

  35. Grunz H 1992 Suramin Changes the Fate of Spemann’s Organizer and Prevents Neural Induction inXenopus laevis;Mech. Dev. 38 133–142

  36. Grunz H 1994 The four animal blastomeres of the eight-cell stage ofXenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives;Int. J. Dev. Biol. 38 69–76

  37. Grunz H 1996a Factors responsible for the establishment of the body plan in the amphibian embryo;Int. J. Dev. Biol. 40 279–289

  38. Grunz H 1996b The long road to chemical and molecular embryology. What amphibians can teach us on differentiation — An interview with professor Heinz Tiedemann;Int. J. Dev. Biol. 40 113–122

  39. Grunz H 1997 Neural Induction in Amphibians;Curr. Topics Dev. Biol. 35 191–228

  40. Grunz H 1999 Amphibian embryos as a model system for organ engineering:in vitro induction and rescue of the heart anlage;Int. J. Dev. Biol. 43 361–364

  41. Grunz H and Staubach J 1979a Cell contacts between chordamesoderm and the overlaying neuroectoderm (presumptive central nervous system) during the period of primary embryonic induction in amphibians;Cell Diff. 14 59–65

  42. Grunz H and Staubach J 1979b Change of the surface charge of cctodermal cells after induction;Roux’s Arch. Dev. Biol. 186 77–80

  43. Grunz H and Tacke L 1989 Neural differentiationof Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer;Cell Diff. Dev. 28 211–218

  44. Grunz H and Tacke L 1990 Extracellular Matrix Components Prevent Neural Differentiation of DisaggregatedXenopus Ectoderm Cells;Cell Diff. Dev. 32 117–124

  45. Grunz H, Born J, Tiedemann H and Tiedemann H 1986 The activation of a neuralizing factor in the neural plate is correlated with its homoiogenetic-inducing activity;Roux’s Arch. Dev. Biol. 195 464–466

  46. Grunz H, Born J, Davids M, Hoppe P, Loppnow-Blinde B, Tacke L, Tiedemann H and Tiedemann H 1989 A mesoderm- inducing factor from aXenopus laevis cell line: Chemical properties and relation to the vegetalizing factor from chicken embryos;Roux’s Arch. Dev. Biol. 198 8–13

  47. Grunz H, Multier A M, Herbst R and Arkenberg G 1975 The differentiation of isolated amphibian ectoderm with or without treatment of an inductor. A scanning electron microscop study;Roux’s Arch. Dev. Biol. 178 277–284

  48. Grunz H, Schüren C and Richter K 1995 The role of vertical and planar signals during the early steps of neural induction;Int. J. Dev. Biol. 39 539–543

  49. Gruss P and Walther C 1992 Pax in Development;Cell 69 719–722

  50. Gurdon J B and Dyson S 1998 Cells’ perception of position in a concentration gradient;Cell 95 159–162

  51. Haider G, Callaerts P and Gehring W J 1995a Induction of ectopic eyes by targeted expression of the eyeless gene inDrosophila;Science 267 1788–1792

  52. Haider G, Callaerts P and Gehring W J 1995 New perspectives on eye evolution;Curr. Opinion Genet. Dev. 5 602–609

  53. Hammerschmidt M and Nüsslein-Volhard C 1993 The Expression of a Zebrafish Gene Homologous to Drosophila-snail Suggests a Conserved Function in Invertebrate and Vertebrate Gastrulation;Development 119 1107–1118

  54. Hammerschmidt M, Pelegri F, Mullins M C, Kane D A, van Eeden F J M, Granato M, Brand M, FurutaniSeiki M, Haffter P, Heisenberg C P, Jiang Y J, Kelsh R N, Odenthal J, Warga R M and Nüsslein-Volhard C 1996a dino and mercedes, two genes regulating dorsal development in the zebrafish embryo;Development 123 95–102

  55. Hammerschmidt M, Serbedzija G N and Mcmahon A P 1996b Genetic analysis of dorsoventral pattern formation in the zebrafish: Requirement of a BMP-like ventralizing activity and its dorsal repressor;Genes Dev. 10 2452–2461

  56. Hawley S H B, Wunnenbergstapleton K, Hashimoto C, Laurent N, Watabe T, Blumberg B W and Cho K W Y 1995 Disruption of BMP signals in embryonicXenopus ectoderm leads to direct neural induction;Genes Dev. 9 2923–2935

  57. Hemmati-Brivanlou A and Melton D A 1997 Vertebrate embryonic cells will become nerve cells unless told otherwise;Cell 88 13–17

  58. Hemmati-Brivanlou A and Melton D A 1992 A Truncated Activin Receptor Inhibits Mesoderm Induction and Formation of Axial Structures inXenopus Embryos.Nature (London) 359 609–614

  59. Hemmati-Brivanlou A and Melton D A 1994 Inhibition of Activin receptor signaling promotes neuralization inXenopus;Cell 77 273–281

  60. Hemmati-Brivanlou A, Kelly O G and Melton D A 1994 Follistatin, an antagonist of Activin, is expressed in the Spemann organizer and displays direct neuralizing activity;Cell 77 283–295

  61. Hollemann T, Chen Y L, Grunz H and Pieler T 1998 Regionalized metabolic activity establishes boundaries of retinoic acid signalling;EMBO J. 17 7361–7372

  62. Holtfreter J 1933a Nachweis der Induktionsfähigkeit abgetöteter Keimteile. Isolations- und Transplantationsversuche;Roux’s Arch. Dev. Biol. 128 584–633

  63. Holtfreter J 1933b Die totale Exogastrulation, eine Selbstablösung des Ektoderms vom Entomesoderm.Kaiser Wilhelm-Institut Biologie, Berlin-Dahlem 669–793

  64. Honore E and Hemmati-Brivanlou A 1997 The “default model” of vertebrate neural specification;M S Med. Sci. 13 192–200

  65. Ishikawa T, Yoshioka H, Ohuchi H, Noji S and Nohno T 1995 Truncated type II receptor for BMP-4 induces secondary axial structures inXenopus embryos;Biochem. Biophys. Res. Commun. 216 26–33

  66. Janeczek J, Born J, Hoppe P and Tiedemann H 1992 Partial Characterization of Neural-Inducing Factors fromXenopus gastrulae — Evidence for a Larger Protein Complex Containing the Factor;Roux’s Arch. Dev. Biol. 201 30–35

  67. Kablar B 1999 Follistain possesses trunk and tail organizer activity and lacks head organizer activity;Tissue Cell 31 28–33

  68. Kessler D S and Melton D 1995 Induction of dorsal mesoderm by soluble, mature Vgl protein;Development 121 2155–2164

  69. Kishimoto Y, Lee K H, Zon L, Hammerschmidt M and SchulteMerker S 1997 The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning;Development 124 4457–4466

  70. Knöchel W, Born J, Hoppe P, Loppnow-Blinde B, Tiedemann H, Tiedemann H, McKeehan W and Grunz H 1987 Mesoderm inducing factors: Their possible relationship to heparin binding growth factors and transforming growth factor-β;Naturwissenschaften 74 604–606

  71. Larabell C A, Torres M, Rowning B A, Yost C, Miller J R, Wu M, Kimelman D and Moon R T 1997 Establishment of the dorso-ventral axis inXenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway;J. Cell Biol. 136 1123–1136

  72. Lemaire P and Yasuo H 1998 Developmental signalling: A careful balancing act;Curr. Biol. 8 228–231

  73. Leyns L, Bouwmeester T, Kim S H, Piccolo S and DeRobertis E M 1997 Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer;Cell 88 747–756

  74. Maeno M, Ong R C, Suzuki A, Ueno N and Kung H F 1994 A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: Roles of animal pole tissue in the development of ventral mesoderm;Proc Natl. Acad. Sci. USA 91 10260–10264

  75. Mansouri A, Goudreau G and Gruss P 1999 Pax genes and their role in organogenesis;Cancer Res. 59 1707S-1709S

  76. McDowell N, Zorn A M, Crease D J and Gurdon J B 1997 Activin has direct long-range signalling activity and can form a concentration gradient by diffusion;Curr. Biol. 7 671–681

  77. Melton D A 1987 Translocation of a localized maternal mRNA to the vegetal pole ofXenopus oocytes;Nature (London) 328 80–82

  78. Melton D A 1991 Pattern Formation During Animal Development;Science 252 234–241

  79. Mikhailov A T, Gorgolyuk N A, Tacke L, Mykhoyan M M and Grunz H 1995 Partially purified factor from embryonic chick brain can provoke neuralization ofRana temporaria andTriturus alpestris but notXenopus laevis early gastrula ectoderm;Int. J. Dev. Biol. 39 317–325

  80. Miller J R and Moon R T 1996 Signal transduction through beta-catenin and specification of cell fate during embryogenesis;Genes Dev. 10 2527–2539

  81. Miller-Bertoglio V E, Fisher S, Sanchez A, Mullins M C and Halpern M E 1997 Differential regulation of chordin expression domains in mutant zebrafish;Dev. Biol. 192 537–550

  82. Minuth M and Grunz H 1980 The formation of mesodermal derivates after induction with vegetalizing factor depends on secondary cell interactions;Cell Diff. 3 229–238

  83. Moon R T and Kimelman D 1998 From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification inXenopus;BioEssays 20 536–545

  84. Moriya N, Uchiayama H and Asashima M 1993 Induction of pronephric tubules by Activin and retinoic in presumptive ectoderm ofXenopus laeveis;Dev. Growth Diff. 35 123–128

  85. Nakamura O and Toivonen S 1978Organizer. A milestone of a half-century from Spemann (Amsterdam, Oxford, New York: Elsevier/North-Holland Biomedical Press)

  86. Nakayama T, Snyder M A, Grewal S S, Tsuneizumi K, Tabata T and Christian J L 1998Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning;Development 125 857–867

  87. Nguyen V H, Schmid B, Trout J, Connors S A, Ekker M and Mullins M C 1998 Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes;Dev. Biol. 199 93–110

  88. Nieuwkoop P D and Faber J 1956Normal table of Xenopus laevis (Daudin) (Amsterdam: North Holland)

  89. Ninomiya H, Ariizumi T and Asashima M 1998 Activin-treated ectoderm has complete organizing center activity inCynops embryos;Dev. Growth Diff. 40 199–208

  90. Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C and Niehrs C 1996 The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling dorsoventral patterning ofXenopus mesoderm;Development 122 3045–3053

  91. Onichtchouk D, Glinka A and Niehrs C 1998 Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning ofXenopus mesoderm;Development 125 1447–1456

  92. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T and DeRobertis E M 1999 The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals;Nature (London) 397 707–710

  93. Plessow S, Köster M and Knöchel W 1991 cDNA Sequence ofXenopus laevis Bone Morphogenetic Protein-2 (BMP-2);Biochim. Biophys. Acta 1089 280–282

  94. Rebagliati M R, Toyama R, Haffter P and Dawid I B 1998 Cyclops encodes a nodal-related factor involved in midline signaling;Proc. Natl. Acad. Sci. USA 95 9932–9937

  95. Regabgliati M R and Dawid I B 1993 Expression of Activin Transcripts in Follicle Cells and Oocytes ofXenopus laevis;Dev. Biol. 159 574–580

  96. Reilly K M and Melton D A 1996 Short-range signaling by candidate morphogens of the TGF beta family and evidence for a relay mechanism of induction;Cell 86 743–754

  97. Richter K, Grunz H and Dawid I B 1988 Gene expression in the embryonic nervous system ofXenopus laevis;Dev. Biol. 85 8086–8090

  98. Rotmann 1935 Reiz und Reizbeantwortung in der Amphibienentwicklung;Verh. Dtsch. Zool. Ges. (Zool. Anz. Suppt.) 76–83

  99. Sargent T D and Dawid I B 1983 Differential gene expression in the gastrulaof Xenopus laevis;Science 222 135–139

  100. Sasai Y, Lu B, Steinbeisser H and Derobertis E M 1995 Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals inXenopus;Nature (London)376 333–336

  101. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont L K and Derobertis E M 1994Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes;Cell 79 779–790

  102. Saxén L and Toivonen S 1962Primary embryonic induction (London: Logos Press-Academic Press)

  103. Schneider S, Herrenknecht K, Butz S, Kemler R and Hausen P 1993 Catenins inXenopus Embryogenesis and Their Relation to the Cadherin-Mediated Cell-Cell Adhesion System;Development 118 629–640

  104. Schneider S, Steinbeisser H, Warga R M and Hausen P 1996 Beta-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos;Mech. Dev. 57 191–198

  105. Schulte-Merker S, Lee K J, McMahon A P and Hammerschmidt M 1997 The zebrafish organizer requires chordino;Nature (London) 387 862–863

  106. Shimizu K and Gurdon J 1999 A quantitative analysis of signal transduction from Activin receptor to nucleus and its relevance to morphogen gradient interpretation;Proc. Natl. Acad. Sci. USA 96 6791–6796

  107. Slack J M W, Darlington B G, Heath J K and Godsave S F 1987 Mesoderm induction in earlyXenopus embryos by heparin-binding growth factors;Nature (London) 326 197–200

  108. Smith J C 1987 A mesoderm inducing factor is produced by aXenopus cell line;Development 99 3–14

  109. Smith J C, Price B M J, Vannimmen K and Huylebroeck D 1990 Identification of a potentXenopus mesoderm-inducing factor as a homologue of Activin A;Nature (London) 345 729–731

  110. Smith W C and Harland R M 1992 Expression Cloning of noggin, a New Dorsalizing Factor Localized to the Spemann Organizer inXenopus Embryos;Cell 70 829–840

  111. Smith W C, Mckendry R, Ribisi S and Harland R M 1995 A nodal-related gene defines a physical and functional domain within the Spemann organizer;Cell 82 37–46

  112. Spemann H and Mangold H 1924 Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren;Roux’s Arch. Dev. Biol. 100 599–638

  113. Spemann H and Schotté O 1932 Über xenoplastische Translantation als Mittel zur zur Analyse der embryonalen Induktion;Naturwissenschaften 20 463–467

  114. Streit A and Stern C D 1999 Neural induction — a bird’s eye view;Trends Genet. 15 20–24

  115. Suzuki A, Chang C B, Yingling J M, Wang W F and Hemmati-Brivanlou A 1997 Smad5 induces ventral fates inXenopus embryo;Dev. Biol. 184 402–405

  116. Suzuki A, Thies R S, Yamaji N, Song J J, Wozney J M, Murakami K and Ueno N 1994 A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the earlyXenopus embryo;Proc. Natl. Acad. Sci. USA 91 10255–10259

  117. Suzuki A, Ueno N and Hemmati-Brivanlou A 1997 Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4;Development 124 3037–3044

  118. Tiedemann H 1959 Neue Ergebnisse zur Frage nach der chemischen Natur der Induktionsstoffe beim Organisator-effekt Spemanns;Die Naturwissenschaften 22 613–623

  119. Tiedemann H, Becker U and Tiedemann H 1961 Aktivierung des mesodermalen Induktionsfaktors in Huehnermuskulatur durch Behandlung mit Phenol;Embryologia 6 185–203

  120. Tomarev S I, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W and Piatigorsky J 1997 Squid Pax-6 and eye development;Proc. Natl. Acad. Sci. USA 94 2421–2426

  121. Ueno N, Ling N, Ying S-Y, Esch F, Shimasaki S and Guillemin R 1987 Isolation and partial characterization of follistatin: A single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone;Proc. Natl. Acad. Sci. USA 84 8282–8286

  122. Varlet I, Collignon J and Robertson E J 1997 nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation;Development 124 1033–1044

  123. Watabe T, Kim S, Candia A, Rothbacher U, Hashimoto C, Inoue K and Cho K W Y 1995 Molecular mechanisms of Spemann’s organizer formation: Conserved growth factor synergy betweenXenopus and mouse;Genes Dev. 9 3038–3050

  124. Weinmaster G 1998 Reprolysins and Astacins … Alive, Alive-O;Science 279 336–337

  125. Weinstein D C and Hemmati-Brivanlou A 1997 Neural induction inXenopus laevis; Evidence for the default model;Curr. Opnion Neurobiol. 7 7–12

  126. Wilson P A and Hemmati-Brivanlou A 1995 Induction of epidermis and inhibition of neural fate by Bmp-4;Nature (London) 376 331–333

  127. Wilson P A, Lagna G, Suzuki A and Hemmati-Brivanlou A 1997 Concentration-dependent patterning of theXenopus ectoderm by BMP4 and its signal transducer smad1;Development 124 3177–3184

  128. Xu R H, Kim J B, Taira M, Zhan S I, Sredni D and Kung H F 1995 A dominant negative bone morphogenetic protein 4 receptor causes neuralization inXenopus ectoderm;Biochem. Biophys. Res. Commun. 212 212–219

Download references

Author information

Correspondence to Horst Grunz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grunz, H. Gene expression and pattern formation during early embryonic development in amphibians. J. Biosci. 24, 515–528 (1999). https://doi.org/10.1007/BF02942663

Download citation

Keywords

  • Genetic control
  • pattern formation
  • evolution
  • Xenopus laevis
  • induction
  • organ engineering