Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On sums of linear and bounded mappings

  • 28 Accesses

  • 2 Citations

Abstract

We give a necessary and sufficient condition in order that a mapf from a real linear space into a real Banach space should have the formf =L + r withL being a linear operator andr being a bounded perturbation.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    S. Czerwik, On the stability of the homogeneous mapping.C.R. Math. Rep. head. Sci. Canada 14 (1992), 228–272.

  2. [2]

    D. H. Hyers, On the stability of the linear functional equation.Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

  3. [3]

    Z. Kominek andJ. MATKOWSKI, On the stability of the homogeneity condition.Results in Math. 27 (1995), 373–380.

  4. [4]

    J. Schwaiger, The functional equation of homogeneity and its stability property.Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 205 (1996), 3–12.

  5. [5]

    L. Székelyhidi, On a characterization of linear operators.Acta Math. Hungar. 71 (1996), 293–295.

  6. [6]

    Ja. Tabor andJo. Tabor, Homogeneity is superstable.Publ. Math. Debrecen 45 (1994), 123–130.

  7. [7]

    Jo. Tabor, On approximately linear mappings. In:“Stability of Hyers-Ulam type”, A Volume dedicated to D. H. Hyers & S. Ulam, (ed. Th. M. Rassias and J. Tabor), Hadronic Press, Inc., Palm Harbor (1994), 157–163.

  8. [8]

    —, Quasi-linear mappings.Rocznik Naukowo-Dydaktyczny WSP w Krakowie 189 (1997), 69–80.

Download references

Author information

Correspondence to R. Ger or P. Volkmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ger, R., Volkmann, P. On sums of linear and bounded mappings. Abh.Math.Semin.Univ.Hambg. 68, 103–108 (1998). https://doi.org/10.1007/BF02942554

Download citation

Keywords

  • Linear Operator
  • Functional Equation
  • Bound Mapping
  • Real Banach Space
  • Homogeneous Mapping