Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Continuous and simultaneous fermentation and recovery of lactic acid in a biparticle fluidized-bed bioreactor

  • 87 Accesses

  • 16 Citations

Abstract

A continuous biparticle fluidized-bed reactor (BFBR) is developed for the simultaneous fermentation and recovery of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles (weak-base resin IRA-35) with sorbent capacity for the product are introduced at the top of the reactor and fall countercurrently to the biocatalyst, effectingin situ removal of the inhibitory lactic acid while also controlling reactor pH at optimal levels. One-week-long fermentation trials using immobilizedLactobacillus delbreuckii with sorbent addition demonstrated a volumetric productivity (6.9 g/L·h) at least 16-fold higher than that of a free-cell batch fermentation with base pH control and identical biomass concentration and medium composition. Regeneration of the loaded sorbent from the BFBR has effected a 35-fold concentration of lactic acid compared with original levels in the fermentation broth (70 vs 2 g/L). Lactic acid concentrations as high as 610 g/L have been observed when the loading solution contained 50 g/L lactic acid. Rich medium formulations did not seem to increase BFBR performance. The benefits of this reactor system, as opposed to conventional batch fermentation, are discussed in terms of productivity and process economics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Atkinson, B. and Mavituna, F. (1991),Biochemical Engineering and Biotechnology Handbook, 2nd ed. Stockton, New York.

  2. 2.

    Lipinsky, E. S. and Sinclair, R. G. (1986),Chem. Eng. Prog. 82, 26–32.

  3. 3.

    Chemical Marketing Reporter (1994), March 14, pp. 28–36.

  4. 4.

    Millis, J. (1993),Am. Chem. Soc. 38, 297–299.

  5. 5.

    Ohleyer, E., Blanch, H. W., and Wilke, C. R. (1985),Appl. Biochem. Biotechnol. 11, 317–331.

  6. 6.

    Evangelista, R. L., Mangold, A. J., and Nikolov, Z. L. (1994),Appl. Biochem. Biotechnol. 45, 131–144.

  7. 7.

    Mercier, P., Yerushalmi, L., Rouleau, D., and Dochain, D. (1992),J. Chem. Tech. Biotechnol. 55, 111–121.

  8. 8.

    Buchta, K. (1983), inBiotechnology: A Comprehensive Treatise Biomass, Microorganisms for Special Applications, Microbial Products I, Energy from Renwable Resources, Dellweg, H., ed., Verlag Chemie, Weinheim, Germany, 410–417.

  9. 9.

    Mark, H. F., Othmer, D. F., Overberger, C. G., and Seaborg, G. T., eds. (1981),Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 13, Wiley, New York.

  10. 10.

    King, C. J. (1992),Chem. Tech. 22, 285–291.

  11. 11.

    Yeh, P. L. H., Bajpai, R. K., and Iannotti, E. L. (1991),J. Fermentation Bioeng.71, 75–77.

  12. 12.

    Kuhn, R., Peretti, S., and Ollis, D. (1993),Appl. Biochem. Biotechnol.39/40, 401–413.

  13. 13.

    Kaufman, E. N., Cooper, S. P., Clement, S. L., and Little, M. H. (1995),Appl. Biochem. Biotechnol. 51, 605–620.

  14. 14.

    Melzoch, K. and Konopaskova, L. (1993),Biotechnol. Lett. 15, 517–520.

  15. 15.

    Andrews, G. F. and Fonta, J. P. (1989),Appl. Biochem. Biotechnol. 20, 375–390.

  16. 16.

    Stenroos, S. L., Linko, Y. Y., and Linko, P. (1982),Biotechnol. Lett. 4, 159–164.

  17. 17.

    Guoqiang, D., Kaul, R., and Mattiasson, B. (1991),Appl. Microbiol. Biotechnol. 36, 309–314.

  18. 18.

    Hang, Y. D., Hamamci, H., and Woodams, E. E. (1989),Biotechnol. Lett. 11, 119,120.

  19. 19.

    Yabannavar, V. M. and Wang, D. I. C. (1991),Biotechnol. Bioeng. 37, 1095–1100.

  20. 20.

    Vick Roy, T. B., Blanch, H. W., and Wilke, C. R. (1982),Biotechnol. Lett. 4, 483–488.

  21. 21.

    Shi, Z., Shimizu, K., Iijima, S., Morisue, T., and Kobayashi, T. (1990),J. Fermentation Bioeng. 70, 415–419.

  22. 22.

    Xavier, A. M. R. B., Goncalves, L. M. D., Moreira, J. L., and Carrondo, M. J. T. (1995),Biotechnol. Bioeng. 45, 320–327.

  23. 23.

    Kulozik, U., Hammelehle, B., Pfeifer, J., and Kessler, H. G. (1992),J. Biotechnol. 22, 107–116.

  24. 24.

    Venkatesh, K. V., Okos, M. R., and Wankat, P. C. (1993),Process Biochem. 28, 231–241.

  25. 25.

    Seevaratnam, S., Holst, J. O., Hjorleifsdottir, S., and Mattiasson, B. (1991),Bioprocess Eng. 6, 35–41.

  26. 26.

    Martin, M. S., Pazos, C., and Coca, J. (1992),J. Chem. Tech. Biotechnol. 54, 1–6.

  27. 27.

    Siebold, M., Frieling, P. V., Joppien, R., Rindfleisch, D., Schugerl, K., and Roper, H. (1995),Process Biochem. 30, 81–95.

  28. 28.

    Garcia, A. A. (1991),Biotechnol. Prog. 7, 33–42.

  29. 29.

    Galliot, F. P., Gleason, C., Wilson, J. J., and Zwarick, J. (1990),Biotechnol. Prog. 6, 370–375.

  30. 30.

    Srivastava, A., Roychoudhury, P. K., and Sahai, V. (1992),Biotechnol. Bioeng. 39, 607–613.

  31. 31.

    Davison, B. H. and Scott, C. D. (1992),Biotechnol. Bioeng. 39, 365–368.

  32. 32.

    Davison, B. H. and Thompson, J. E. (1992),Appl. Biochem. Biotechnol. 34, 431–439.

  33. 33.

    Godia, F., Casas, C., and Sola, C. (1987),Process Biochem. 22, 43–48.

  34. 34.

    Davison, B. H. and Scott, C. D. (1988),Appl. Biochem. Biotechnol. 18, 19–34.

  35. 35.

    Kaufman, E. N., Cooper, S. P., and Davison, B. H. (1994),Appl. Biochem. Biotechnol. 45, 545–554.

  36. 36.

    Scott, C. D. (1987),Ann. NY Acad. Sci. 501, 487–493.

  37. 37.

    Major, N. C. and Bull, A. T. (1989),Biotechnol. Bioeng. 34, 592–599.

  38. 38.

    Ernst, E. E. and McQuigg, D. W. (1992) in AICHE 1992 National Meeting, Miami Beach, FL.

  39. 39.

    Nakagawa, M., Nakamura, I., and Kobayashi, T. (1975),J. Fermentation Technol. 53, 127–134.

  40. 40.

    Yang, C. W., Lu, Z., and Tsao, G. T. (1995),Appl. Biochem. Biotechnol. 51, 57–71.

Download references

Author information

Correspondence to Eric N. Kaufman.

Additional information

The submitted manuscript has been authored by a contractor of the US government under contract DE-AC05-84OR21400. Accordingly, the US government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US government purposes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaufman, E.N., Cooper, S.P., Budner, M.K. et al. Continuous and simultaneous fermentation and recovery of lactic acid in a biparticle fluidized-bed bioreactor. Appl Biochem Biotechnol 57, 503 (1996). https://doi.org/10.1007/BF02941730

Download citation

Index Entries

  • Lactic acid fermentation
  • resin
  • adsorbent
  • biparticle fluidized bed
  • continuous