Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Continuous translation invariant valuations on convex bodies

  • 34 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. D. Aleksandrov, On the theory of mixed volumes I: Extension of certain concepts in the theory of convex bodies (Russian). Mat. Sbornik44 (N.S.2), 947–972 (1937).

  2. [2]

    A. D. Aleksandrov, On the theory of mixed volumes II: New inequalities between mixed volumes and their applications (Russian), Mat. Sbornik44 (N.S.2), 1205–1238 (1937).

  3. [3]

    T. Bonnesen, W. Fenchel, Theorie der konvexen Körper. Berlin: Springer 1934.

  4. [4]

    W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper. Mat-fys. Medd. Danske Vid. Selsk.16, 3 (1938).

  5. [5]

    W. J. Firey, Local behaviour of area functions of convex bodies. Pacific J. Math.35, 345–357 (1970).

  6. [6]

    W. J. Firey, A functional characterization of certain mixed volumes. Israel J. Math.24, 274–281 (1976).

  7. [7]

    P. R. Goodey,W. Weil, Distributions and valuations (submitted).

  8. [8]

    H. Hadwiger, Translationsinvariante, additive und schwachstetige Polyederfunktionale. Arch. Math.3, 387–394 (1952).

  9. [9]

    H. Hadwiger, Additive Funktionalek-dimensionaler Eikörper I. Arch. Math.3, 470–478 (1952).

  10. [10]

    H. Hadwiger, Additive Funktionalek-dimensionaler Eikörper II. Arch. Math.4, 374–379 (1953).

  11. [11]

    H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin: Springer 1957.

  12. [12]

    J. Horváth, Topological vector spaces and distributions, Vol. 1. Reading, Mass.: Addison-Wesley 1966.

  13. [13]

    K. Leichtweiss, Konvexe Mengen. Berlin: VEB Deutsch. Verl. d. Wiss. 1980.

  14. [14]

    P. McMullen, Valuations and Euler-Type relations on certain classes of convex polytopes. Proc. London Math. Soc. (3)35, 113–135 (1977).

  15. [15]

    P. McMullen, Continuous translation invariant valuations on the space of compact convex sets. Arch. Math.34, 377–384 (1980).

  16. [16]

    P. McMullen, Weakly continuous valuations on convex polytopes (to appear).

  17. [17]

    P. McMullen,R. Schneider, Valuations on convex bodies (to appear).

  18. [18]

    L. Schwartz, Theorie des Distributions, Vol. 1. Paris: Hermann 1950.

  19. [19]

    F. Treves, Topological vector spaces, distributions and kernels. New York: Academic Press 1967.

  20. [20]

    W. Weil, Das gemischte Volumen als Distribution. Manuscripta Math.86, 1–18 (1981).

Download references

Author information

Correspondence to U Betke or P. R Goodey.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02941520.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Betke, U., Goodey, P.R. Continuous translation invariant valuations on convex bodies. Abh.Math.Semin.Univ.Hambg. 54, 95–105 (1984). https://doi.org/10.1007/BF02941444

Download citation

Keywords

  • Convex Body
  • Topological Vector Space
  • Surface Area Measure
  • Mixed Volume
  • Invariant Valuation