Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A mean-value theorem on sums of two k-th powers of numbers in residue classes

  • 76 Accesses

  • 3 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    M.N. Huxley, Exponential Sums and Lattice Points. Proc. London Math. Soc. (3)60 (1990), 471–502.

  2. [2]

    E. Krätzel, Lattice Points. VEB Dt. Verlag d. Wiss. Berlin 1988.

  3. [3]

    E. Krätzel, Bemerkungen zu einem Gitterpunktsproblem. Math. Ann.179 (1969), 90–96.

  4. [4]

    W. Müller and W.G. Nowak, Lattice Points in Planar Domains: Applications of Huxley’s “Discrete Hardy-Littlewood Method” . To appear in a Springer Lecture Notes volume (ed. E. Hlawka), in 1990.

  5. [5]

    J.R. Wilton, An Extended Form of Dirichlet’s Divisor Problem. Proc. London Math. Soc, II. Ser.36 (1933), 391–426.

Download references

Author information

Correspondence to G. Kuba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuba, G. A mean-value theorem on sums of two k-th powers of numbers in residue classes. Abh.Math.Semin.Univ.Hambg. 60, 249–256 (1990). https://doi.org/10.1007/BF02941060

Download citation

Keywords

  • Lattice Point
  • Residue Class
  • Arithmetic Function
  • Springer Lecture Note
  • Circle Problem