Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A note on almost kähler manifolds

Abstract

For anyn ≥ 2, we give examples of almost Kähler conformally flat manifoldsM 2n which are not Kähler. We discuss the meaning of these examples in the context of the Goldberg conjecture on almost Kahler manifolds.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    D. E. Blair, Nonexistence of 4-dimensional almost Kaehler manifolds of constant curvature.Proc. Am. Math. Soc. 110 (1990), 1033–1039.

  2. [2]

    L. A. Cordero, M. Fernandez, andM. De Leon, Examples of compact non- Kähler almost Kähler manifolds.Proc. Amer. Math. Soc. 95 (1985), 280–286.

  3. [3]

    S. I. Goldberg, Integrability of almost Kaehler manifolds.Proc. Am. Math. Soc. 21 (1969), 96–100.

  4. [4]

    C. C. Hsiung,Almost complex and complex structures. Series in Pure Mathematics, Vol. 20, World Sci. Publ., Singapore, 1995.

  5. [5]

    W. Jelonek, Some simple examples of almost Kähler non-Kähler structures.Math. Ann. 305 (1996), 639–649.

  6. [6]

    S. Kobayashi andK. Nomizu,Foundations of differential geometry II. New York, Interscience, 1969.

  7. [7]

    M. Kurita, On the holonomy group of the conformally flat Riemannian manifold.Nagoya Math. J. 9 (1955), 161–171.

  8. [8]

    J. Lafontaine, Conformai geometry from the Riemannian viewpoint. In: Conformai Geometry by R. S. Kulkarni, U. Pinkall (Eds.),Aspects of Math. Vol.E12, 65–91, Vieweg 1988.

  9. [9]

    N. Murakoshi, T. Oguro, andK. Sekigawa, Four-dimensional almost Käler locally symmetric spaces.Diff. Geom. Appl. 6 (1996), 237–244.

  10. [10]

    T. Oguro, Examples of non-Kähler, almost Kähler symmetric spaces.C.R. Math. Rep. Acad. Sci. Canada 18 (1996), 243–246.

  11. [11]

    T. Oguro andK. Sekigawa, Non-existence of almost Kähler structure on hyperbolic spaces of dimension 2n (≥ 4).Math. Ann. 300 (1994), 317–329.

  12. [12]

    —, Almost Kähler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line.Tsukuba J. Math. 20 (1996), 151–161.

  13. [13]

    Z. Olszak, A note on almost Kaehler manifolds.Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys. 26 (1978), 139–141.

  14. [14]

    B. Watson, New examples of strictly almost Kähler manifolds.Proc. Am. Math. Soc. 88(1983), 541–544.

Download references

Author information

Correspondence to Domenico Catalano or Filip Defever or Ryszard Deszcz or Marian Hotloś or Zbigniew Olszak.

Additional information

The second author is a Postdoctoral Researcher F.W.O.-Vlaanderen, Belgium.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catalano, D., Defever, F., Deszcz, R. et al. A note on almost kähler manifolds. Abh.Math.Semin.Univ.Hambg. 69, 59–65 (1999). https://doi.org/10.1007/BF02940862

Download citation

Keywords

  • Riemannian Manifold
  • Scalar Curvature
  • Sectional Curvature
  • Einstein Manifold
  • Christoffel Symbol