Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography

Abstract

Background

Positron emission tomography-derived11C-labeled acetate kinetics have been shown to reflect myocardial oxidative metabolism. The objective of the study was to use this metabolic imaging technique in combination with an evaluation of left ventricular work as an index of ventricular mechanical efficiency.

Methods and Results

The effects of ventricular ejection fraction and loading on this index were studied quantitatively in a canine experimental model. There was a curvilinear relationship beween efficiency and the end-diastolic volume per unit mass (r=0.84), which appeared to integrate the main determinants of left ventricular mechanical performance successfully and allowed the detection of a decreased ventricular efficiency in acute experimental heart failure.

Conclusions

This approach appears to have the potential to assess the energetic working point of the ventricle in clinical heart disease and follow the effects of therapy. The data demonstrate the feasibility of an estimate of ventricular efficiency that relies on noninvasive data-acquisition techniques.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Katz AM. Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 1990;322:100–10.

  2. 2.

    Packer M, Carver J, Rodenheffer R, et al. The PROMISE study research group: effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991;325:1468–75.

  3. 3.

    Alpert NR, Mulieri LA. Increased myothermal economy of isometric force generation in compensated hypertrophy induced by pulmonary artery constriction in the rabbit: a characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 1982;50:491–500.

  4. 4.

    Suga H. Ventricular energetics. Physiol Rev 1990;70:247–77.

  5. 5.

    Kaneyama T, Asanoi H, Ishizaka S, Yamanishi K, Fujita M, Sasayama S. Energy conversion efficiency in human left ventricle. Circulation 1992;85:988–96.

  6. 6.

    Bing RJ, Hammond MM, Handelsman JC, et al. Measurement of coronary blood flow, oxygen consumption and efficiency of the left ventricle in man. Am Heart J 1949;38:1–24.

  7. 7.

    Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594–605.

  8. 8.

    Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-derived radiolabel and oxidative metabolism: physiologic basis and clinical significance. J Nucl Med 1991;32:1957–60.

  9. 9.

    Bretschneider HJ, Hellige G. Pathophysiologie der Ventrikelkontraktion: Kontraktilität, Inotropie, Suffizienzgrad und Arbeitsökonomie des Herzens. Verh Dtsch Ges Kreislaufforschg 1976;42:14–30.

  10. 10.

    Frank O. Die Grundform des arteriellen Pulses. Z Biol 1899;37:483–526.

  11. 11.

    Nichols AB, Pearson MH, Sciacca RR, Cannon PJ. Left ventricular mechanical efficiency in coronary artery disease. J Am Coll Cardiol 1986;7:270–9.

  12. 12.

    Buck A, Wolpers HG, Hutchins GD, et al. Effect of C-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32:1950–7.

  13. 13.

    Lusk G. Analysis of the oxidation of mixtures of carbohydrates and fat. J Biol Chem 1924;59:41–2.

  14. 14.

    Rohde E. Über den Einfluss der mechanischen Bedingungen auf die Tätigkeit und den Sauerstoffverbrauch des Warmblüterherzens. Nauyn Schmiedebergs Arch Exp Pathol Pharmacol 1912;68:401–10.

  15. 15.

    Sarnoff SJ, Braunwald E, Welch GH Jr, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol 1958;192:148–56.

  16. 16.

    Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 1982;50:273–86.

  17. 17.

    Baller D, Bretschneider HJ, Hellige G. Validity of myocardial oxygen consumption parameters. Clin Cardiol 1979;2:317–27.

  18. 18.

    Bretschneider HJ, Martel J, Hellige G, Hensel I, Kettler D. Korrelationen des endsystolischen Ventrikel-Volumens pro Gewichteinheit zu Potenzfunktionen des arteriellen Drucks und der ventrikulären Druckanstigesgeschwindigkeit. Verh. Dtsch Ges Kreislaufforschung 1972;38:233–7.

  19. 19.

    Takaoka H, Takeuchi M, Odake M, et al. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in the human ventricle. Circulation 1993;87:59–69.

  20. 20.

    Hoeft A, Korb H, Holpers HG, Hellige G. Determinants of cardiac pump efficiency: comparison of a theoretical model with experimental data of normo and hypothermic dogs. In: Mohl E, ed. The coronary sinus. Darmstdat: Steinkopff Verlag, 1984:92–9.

  21. 21.

    Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 1986;250:R1021–7.

  22. 22.

    Suga H, Igarashi Y, Yamada O, Goto Y. Mechanical efficiency of the left ventricle as a function of preload, afterload, and contractility. Heart Vessels 1985;1:3–8.

  23. 23.

    Beanlands RSB, Armstrong WF, Hicks RJ, et al. The effects of afterload reduction on myocardial C-11 acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J Nucl Cardiol 1994;1(1):3–16.

  24. 24.

    Wolpers HG, Buck A, Hicks RJ, Nguyen N, Mangner TH, Schwaiger M. Non-invasive assessment of cardiac efficiency by C-11 acetate and positron emission tomography [Abstract]. Circulation 1990;82:III-613.

  25. 25.

    Erbel R, Schweizer P, Lambertz H, et al. Echoventriculography: a simultaneous analysis of two-dimensional echocardiography and cineventriculography. Circulation 1983;67:205–15.

  26. 26.

    Schnittger I, Fitzgerald PJ, Daughters GT, et al. Limitations of comparing left ventricular volumes by two dimensional echocardiography, myocardial markers and cineangiography. Am J Cardiol 1982;50:512–9.

  27. 27.

    Reichek N. Echocardiographic assessment of left ventricular hypertrophy. Eur Heart J 1982;3(suppl):49–57.

Download references

Author information

Correspondence to H. Georg Wolpers MD or Markus Schwaiger MD.

Additional information

This work was done during the tenure of an Established Investigatorship from the American Heart Association (M. Schwaiger) and Research Career Development Award (K04-HL01787) and supported by the National Institutes of Health, Heart, Lung, and Blood Institute, Bethesda, MD. (R01 HL41047-01 and HL36450-06), and the American Heart Association of Michigan (88-0699-J1). H. G. Wolpers was on a leave of absence from the Division of Cardiology, Medical School Hannover, Germany, and recipient of a research fellowship by the Deutsche Forschungsgemeinschaft, DFG.

† In memory of H. J. Bretschneider, MD, Dec. 9, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolpers, H.G., Buck, A., Nguyen, N. et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J. Nucl. Cardiol. 1, 262–269 (1994). https://doi.org/10.1007/BF02940340

Download citation

Key Words

  • myocardial oxygen consumption
  • positron emission tomography
  • cardiac energetics
  • cardiomyopathy