Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of myocardial metabolism for the study of the pathophysiology of cardiac disease


Many variables, including food ingestion, circulating hormone, and the cardiac work load, affect myocardial metabolism. Important changes in myocardial metabolism are associated with myocardial ischemia. The study of myocardial metabolism by means of different invasive and noninvasive techniques allows a better understanding of both cardiac physiology and pathophysiology in humans.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bing RJ. The metabolism of the heart. In: Harvey lecture series 50. Orlando, Florida: Academic Press, 1954:27–70.

  2. 2.

    Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC. Measurement of coronary sinus blood flow by continuous and intermittent exercise to exhaustion. J Appl Physiol 1971;144:181–95.

  3. 3.

    Pepine CJ, Metha JM, Webster WW, Nichols WW. In vivo validation of a thermodilution method to determine regional left ventricular blood flow in patients with coronary artery disease. Circulation 1978;58:795–802.

  4. 4.

    Camici PG, Marraccini P, Marzilli M, et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol 1989;257:E309–17.

  5. 5.

    Gertz EW, Wisneski JA, Neese R, Bristow JD, Searle GL, Hanlon JT. Myocardial lactate metabolism: evidence of lactate release during net chemical extraction in man. Circulation 1981;63:1273–9.

  6. 6.

    Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988;37:287–301.

  7. 7.

    Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven Press, 1986.

  8. 8.

    Schelbert HR, Schwaiger M. PET studies of the heart. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven Press, 1986:581–662.

  9. 9.

    Schelbert HR, Henze E, Schon HR, et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography, IV: in vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J 1983;106:736–50.

  10. 10.

    Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Cir Res 1988;63:628–34.

  11. 11.

    Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594–605.

  12. 12.

    Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054–63.

  13. 13.

    Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C]acetate and dynamic positron emission tomography. Circulation 1989;79:134–42.

  14. 14.

    Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation 1989;80:863–72.

  15. 15.

    Walsh MN, Geltman EM, Brown MA, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–808.

  16. 16.

    Iida H, Rhodes CG, Yamamoto Y, Jones T, De Silva R, Araujo LI. Quantitative measurement of myocardial metabolic rate of oxygen (MMRO2) in man using positron emission tomography. Circulation 1990;82:III-614.

  17. 17.

    De Silva R, Yamamoto Y, Rhodes CG, Iida H, Maseri A, Jones T. Non-invasive quantification of regional myocardial oxygen consumption in anaesthetized greyhounds [Abstract]. J Physiol (Lond) 1992;446:219P.

  18. 18.

    Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-d-glucose. J Nucl Med 1978;19:1154–61.

  19. 19.

    Huang SC, Phelps ME. Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986:287–346.

  20. 20.

    Camici PG, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and applications to imaging by positron emission tomography. Progr Cariovasc Dis 1989;32:217–38.

  21. 21.

    Ferrammini E, Samtoro D, Bomadomma R, Natali A, Parodi O, Camici PG. Metabolic and hemodynamic effects of insulin on human heart. Am J Physiol 1993;27:E308–15.

  22. 22.

    Camici PG, Marraccini P, Lorenzoni R, et al. Metabolic markers of stress-induced myocardial ischemia. Circulation 1991;83(suppl):III8–13.

  23. 23.

    Grover-McKay M, Schelbert HR, Schwaiger M, et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation 1986;74:281–92.

  24. 24.

    Camici PG, Araujo LI, Spinks T, et al. Increased uptake of F18-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986;74:81–8.

  25. 25.

    Araujo LI, Camici PG, Spinks T, Jones T, Maseri A. Beneficial effects of nitrates on myocardial glucose utilization in unstable angina pectoris. Am J Cardiol 1987;62:26H-30H.

  26. 26.

    Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography,18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1981;64:766–78.

  27. 27.

    Tillisch J, Brunken R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR. Reversal of cardiac wall motion abnormalities predicted by using positron emission tomography. N Engl J Med 1985;314:884–8.

  28. 28.

    Bonow RO, Berman DS, Gibbons RJ, et al. Cardiac positron emission tomography: a report for health officials from the Committee on Advance Cardiac Imaging and Technology of the Council on Clinical Cardiology, American Heart Association. Circulation 1991;84:447–54.

Download references

Author information

Correspondence to Paolo G. Camici.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Camici, P.G. Investigation of myocardial metabolism for the study of the pathophysiology of cardiac disease. J Nucl Cardiol 1, S34–S39 (1994). https://doi.org/10.1007/BF02940067

Download citation

Key Words

  • coronary artery disease
  • angiography
  • myocardial metabolism
  • positron emission tomography