Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strong and weak boundary components

This is a preview of subscription content, log in to check access.

Literature

  1. 1.

    L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets,Acta Math. 83 (1950), 101–129.

  2. 2.

    L. Sario, Ueber Riemannsche Flächen mit hebbarem Rand,Ann. Acad. Sci. Fenn. A. I. 50 (1948), 79 pp.

  3. 3.

    L. Sario, Sur la classification des surfaces de Riemann,C. R. 11.Congr. Math. Scand. Trondheim (1949), 229–238.

  4. 4.

    L. Sario, A linear operator method on arbitrary Riemann surfaces,Trans. Amer. Math. Soc. 72 (1952), 281–295.

  5. 5.

    L. Sario, An extremal method on arbitrary Riemann surfaces,Trans. Amer. Math. Soc. 73 (1952), 459–470.

  6. 6.

    L. Sario, Capacity of the boundary and of a boundary component,Annals of Math. 59 (1954), 135–144.

  7. 7.

    L. Sario, Extremal problems and harmonic interpolation on open Riemann surfaces,Trans. Amer. Math. Soc. 79 (1955), 362–377.

  8. 8.

    L. Sario, Proposal to OOR, Contract DA-04-495-ORD-722, University of California, Los Angeles, 1955 (mimeographed).

  9. 9.

    L. Sario, Countability axiom in the theory of Riemann surfaces,International Colloquium on the Theory of Functions, Helsinki, Aug. 12–18, 1957.

  10. 10.

    N. Savage, Weak boundary component of an open Riemann surface,Duke Math. J. 24 (1957), 79–96.

  11. 11.

    J. Seewerker, The extendability of a Riemann surface, Doctoral Dissertation, University of California, Los Angeles, 1957, 42 pp. (mimeographed).

Download references

Author information

Correspondence to Leo Sario.

Additional information

Sponsored by OOR, DA-04-495-ORD-722, University of California, Los Angeles, 1956–57.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sario, L. Strong and weak boundary components. J. Anal. Math. 5, 389–398 (1956). https://doi.org/10.1007/BF02937350

Download citation

Keywords

  • Riemann Surface
  • Boundary Component
  • Extremal Property
  • Reduction Theorem
  • Deviation Formula