Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plant terpenes and lignin as natural cosubstrates in biodegradation of polyclorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs)

  • 148 Accesses

  • 10 Citations


The objective of this minireview is to examine how cometabolic biodegradation of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) might be affected by plant terpenes and lignins as natural substrates abundant in nature. The topics covered, hence, are environmental significance of PCBs and PAHs, nature and distribution of plant terpenes and lignin, structural and metaoblic similarities of the natural compounds to PCBs and PAHs, and possible roles of the natural substrates in inducing the biodegradative pathways of PCBs and PAHs.

This is a preview of subscription content, log in to check access.


  1. [1]

    McConnell, E. E. (1989) Acute and chronic toxicity and carcinogenesis, Chap. 6. In: R. D. Kimbrough, and Jensen, A. A. (eds),Halogenated Biphenyls, Terphenyls, Naphyhalenes, Dibenzodioxins and Related Compoundes. Elsevier, Amsterdam.

  2. [2]

    Keith, L. H., and W. A. Telliard (1979) Priority pollutants I-A perspective view.Environ. Sci. Technol. 13: 416–423.

  3. [3]

    Lewtas, J. (1993) Complex mixtures of air pollutants: Characterizing the cancer risk of polycyclic organic matter.Environ. Health Perspect. 100: 211–218.

  4. [4]

    International Agency for Research on Cancer (1983) IARC Monographs on the Evaluation of the carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds, Part 1, Chemical, environmental and experimental data, Vol. 32, Geneva: World Health Organization.

  5. [5]

    Dev, S. (1982) Handbook of terpenoids-monoterpenoids, Vol. 1 and 2. CRC Press, Boca Raton, FL, USA.

  6. [6]

    Devon, T. K., and A. I. Scott (1972) The monoterpenes, pp. 3–54. In: Handbook of Naturally Occurring Compounds, Vol. II. Terpenes. Academic Press, NY, USA

  7. [7]

    Braddock, R. J., and K. R. Cadwallader (1995) Bioconversion of citrus D-limonene.ACS Symp. Scr. 596: 142–148.

  8. [8]

    Kaufman, P. B., L. J. Cseke, S. Warber, J. A. Duke, and H. L. Brielmann (1999) Natural Products from Plants. CRC Press, Boca Raton, FL, USA.

  9. [9]

    Paul, E. A., and F. E. Clark (1989)Soil Microbiology and Biochemistry. 2nd ed., pp. 136–137. Academic Press, New York, USA.

  10. [10]

    Mohn, W. W., and G. R. Stewart (1997) Bacterial metabolism of chlorinated dehydroabietic acids occurring in pulp and paper mill effluents.Appl. Environ. Microbiol. 63: 3014–3020.

  11. [11]

    White, C. S. (1990) Comments on effects of terpenoids on nitrification in soil.Soil. Sci. Soc. Am. J. 54: 296–297.

  12. [12]

    Benner, R., and R. E. Hodson (1985) Microbial degradation of the leachable and lignocellulosic components of leaves and wood fromRhozophora mangle in a tropical mangrobe swamp.Mar. Ecol. Prog. Ser. 23: 221–230.

  13. [13]

    Benner, R., M. A. Moran, and R. E. Hodson (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procanyotes and eucaryotes.Limnol. Oceanogr. 31: 89–100.

  14. [14]

    Conzález, J. M., F. Mayer, M. A. Moran, R. E. Hodson, and W. B. Whitman (1997)Microbulbifer hydrolyticus gen. nov., andMarinobacterium georgiense gen. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community.Int. J. Systematic Bacteriol. 47: 369–376.

  15. [15]

    Vicuna, R. (1988) Bacterial degradation of lignin.Enzyme Microb. Technol. 10: 646–655.

  16. [16]

    Zimmermann, W. (1990) Degradation of lignin by bacteria.J. Biotechnol. 13: 119–130.

  17. [17]

    Colocousi, A. and D. J. Leak (1995) Cloning and expression of the α-pinene monooxygenase gene fromPseudomonas fluorescens NCIMB 11671 pp. 144–157. In: M. Moo-Younget al. (eds). Environmental Biotechnology: Principles and Applications.

  18. [18]

    Hernandez, B. S., S. C. Koh, M. Chial, and D. D. Focht (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil.Biodegradation 8: 153–158.

  19. [19]

    Mohn, W. W. (1995) Bacteria obatined from a sequencing batch reactor that are capable of growth on dehydroabietic acid.Appl. Environ. Microbiol. 61: 2145–2150.

  20. [20]

    Noda, Y., S. Nishikawa, K. I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, and M. Yamasaki (1990) Molecular cloning of the protocatechuate 4,5-dioxygenase genes ofPseudomonas paucimobilis.J. Bacteriol. 172: 2704–2709.

  21. [21]

    Peng, X., T. Egashira, K. Hanshiro, E. Masai, S. Nishikawa, Y. Katayama, K. Kimbara, and M. Fukuda (1993) Cloning ofSphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme.Appl. Environ. Microbiol. 64: 2520–2527.

  22. [22]

    Martin, V. J. T., and W. W. Mohn (1999) A novel aromaticring hydroxylating dioxygenase from the diterpenoid-degrading bacteriumPseudomonas abientaniphila BKME-9.J. Bacteriol. 181: 2675–2682.

  23. [23]

    Park, Y. I., J. S. So, and S.-C. Koh (1999) Induction by Carvone of the Polychlorinated biphenyl (PCB)-degradative pathway inAlcaligenes eutrophus H850 and its molecular monitoring.J. Microbiol. Biotechnol. 9: 804–810.

  24. [24]

    Bogan, B. W., B. Schoenike, R. T. Lamar, and D. Cullen (1996) Expression oflip genes during growth in soil and oxidation of an thracene byPhanerochaete chrysosporium.Appl. Environ. Microbiol. 62: 3697–3703.

  25. [25]

    Perestelo, F., M. A. Falcon, and G. de La Fuente (1990) Biotransformation of kraft lignin fractions bySeriatia marcesens.Lett. Appl. Microbiol. 10: 61–64.

  26. [26]

    Masai, E., and M. Fukuda (1999) Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway ofSphingomonas paucimobilis SYK-6.J. Bacteriol. 181: 55–62.

  27. [27]

    Gilbert, E. S., and D. E. Crowley (1997) Plant compounds that induce polychlorinated biphenyl biodegradation byArthrobacter sp. strain B1B.Appl. Environ. Microbiol. 63: 1933–1938.

Download references

Author information

Correspondence to Sung-Cheol Koh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koh, S., Park, Y., Koo, Y. et al. Plant terpenes and lignin as natural cosubstrates in biodegradation of polyclorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Biotechnol. Bioprocess Eng. 5, 164–168 (2000). https://doi.org/10.1007/BF02936588

Download citation


  • PCBs
  • PAHs
  • terpenes
  • lignin
  • biodegradation
  • bioremediation
  • induction
  • RT-PCR