Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Protein microarrays and their applications

  • 159 Accesses

  • 23 Citations


In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.

This is a preview of subscription content, log in to check access.


  1. [1]

    Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray.Science 270: 467–470.

  2. [2]

    Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris, and S. P. A. Fodor (1996) Accessing genetic information with highdensity DNA arrays.Science 274: 610–614.

  3. [3]

    Stillman, B. A. and J. L. Tonkinson (2000) FASTTM slides: A novel surface for microarrays.Biotechniques 29: 630–633.

  4. [4]

    Kukar, T., S. Eckenrode, Y. R. Gu, W. Lian, M. Megginson, J. X. She, and D. H. Wu (2002) Protein microarrays to detect protein-protein interactions using red and green fluorescent proteinsAnal. Biochem. 306: 50–54.

  5. [5]

    MacBeath, G. and S. L. Schreiber (2000) Printing Proteins as microarrays for high-throughput function determination.Science 289: 1760–1763.

  6. [6]

    Blaws, A. S. and W. M. Reichert (1998) Protein patterning.Biomaterials 19: 595–609.

  7. [7]

    Nakanishi, K., H. Muguruma, and I. Karube (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-ploymerized films for immunosensors.Anal. Chem. 68: 1695–1700.

  8. [8]

    Shriver-Lake, L. C., B. Donner, R. Edelstein, K. Breslin, S. K. Bhatia, and F. S. Ligler (1997) Antibody immobilization using heterobifunctional crosslinkers.Biosens. Bioelectron. 12: 1101–1106.

  9. [9]

    Dontha, N., W. B. Nowall, and W. G. Kuhr (1997) Generationj of biotin/avidin/enzyme nanostructures with maskles photolithography.Anal. Chem. 69: 2619–2625.

  10. [10]

    Pritchard, D. J., H. Morgan, and J. M. Cooper (1995) Patterning and regeneration of surfaces with antibodies.Anal. Chem. 67: 3605–3607.

  11. [11]

    Gaber, B. P., B. D. Martin, and D. C. Turner (1999) Create a protein microarray using a hydrogel “stamper”.Chemtech. 29: 20–24.

  12. [12]

    Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, and M. Snyder (2001) Global analysis of protein activities using proteome chips.Science 293: 2101–2105.

  13. [13]

    Neubert, H., E. S. Jacoby, S. S. Bansal, R. K. Lies, D. A. Cowan, and A. T. Kicman (2002) Enhanced affinity capture MALDI-TOF MS: Orientation of an immunoglobulin G using recombinant protein G.Anal. Chem. 74: 3677–3683.

  14. [14]

    Peluso, P., D. S. Wilson, D. Do, H. Tran, M. Venkatasubbajah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock (2003) Optimizing antibody immobilization strategies for the construction of protein arrays.Anal. Biochem. 312: 113–124.

  15. [15]

    Konig, B. and M. Gratzel (1994) A novel immunosensor for herpes virus.Anal. Chem. 66: 341–344.

  16. [16]

    Turkova, J. (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function.J. Chromatogr. B 722: 11–31.

  17. [17]

    Anderson, G. P., M. A. Jacoby, F. S. Ligler, and K. D. King (1997) Effectiveness of protein A for antibody immobilization for a fiber optic biosensor.Biosens. Bioelectron. 12: 329–336.

  18. [18]

    Babacan, S. P. Pivarnik, S. Letcher, and A. G. Rand (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor applicationBiosens. Bioelectron. 15: 615–621.

  19. [19]

    Lu, B., M. R. Smyth, and R. O’Kennedy (1996) Oriented immobilization of antibodies and its applications in immunoassays and immunosensors.Analyst 121: 29R-32R.

  20. [20]

    Turkova, J., L. Petkov, J. Sajdok, J. KaM, and J. Bene (1990) Carbohydrates as a tool for oriented immobilization of antigens and antibodies.J. Chromatogr. A 500: 585–593.

  21. [21]

    Turkova, J., S. Vohnik, M. Helusova, J. Bene, and M. Ticha (1992) Galactosylation as a tool for the stabilization and immobilization of proteins.J. Chromatogr. A 597: 19–27.

  22. [22]

    Heller, M. J. (2002) DNA microtechnology: Devices, systems, and applications.Annu. Rev. Biomed. Eng. 4: 129–153, 2002.

  23. [23]

    Gracey, A. Y. and A. R. Cossins (2003) Application of microarray technology in environmental and comparative physiology.Annu. Rev. Physiol. 65: 231–259.

  24. [24]

    Dhiman, N., R. Bonilla, D. O’Kane, and G. A. Poland (2001) Gene expression microarray: a 21st century tool for directed vaccine design.Vaccine 20: 22–30.

  25. [25]

    Mooney, J. F., A. J. Hunt, J. R. McIntosh, C. A. Liberko, D. M. Walba, and C. T. Rogers (1996) Patterning of functional antibodies and other proteins by photolithography of silane monolayers.Proc. Natl. Acad. Sci. USA 93: 12287–12291.

  26. [26]

    Mooney, J. F., C. T. Rogers, A. J. Hunter, and J. R. McIntosh (1996) A general technique for patterning of functional proteins with photolithography of silane monolayers.Biophys. J. 70: TU216-TU216.

  27. [27]

    Luo, Y. Q., J. G. Cai, I. Ginis, Y. Y. Sun, S. L. Lee, S. X. Yu, A. Hoke, and M. Rao (2003) Designing, testing, and validating a focused stem cell microarray for characterization of neutral stem cells and progenitor cells.Stem Cells 21: 575–587.

  28. [28]

    Bernard, A., E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck (1998) Printing patterns of proteins.Langmuir 14: 2225–2229.

  29. [29]

    Delamarche, E., M. Geissler M., A. Bernard, H. Wolf, B. Michel, J. Hilborn, and C. Donzel (2001) Hydrophilic poly (dimethylsiloxane) stamps for microcontact printing.Adv. mater. 13: 1164.

  30. [30]

    Urbanowska, T., S. Mangialaio, C. Hartmann, and E. Legay (2003) Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis diseaseCell Biol. Toxicol. 19: 189–202.

  31. [31]

    Newman, J. D., A. F. P. Turner, and G. Marrazza (1992) Ink-jet printing for the fabrication of amerometric glucose biosensors.Anal. Chim. Acta 262: 13–17.

  32. [32]

    Roda, A., M. Gardigli, C Russo, P. Pasini, and M. Baraldini (2000) Protein microdeposition using a conventional ink-jet printer.Biotechniques 28: 492–496.

  33. [33]

    Pardo, L., W. C. Wilson, and T. J. Boland (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method.Langmuir 19: 1462–1466.

  34. [34]

    Watanabe, K., T. Miyazaki, and R. Matsuda (2003) Growth factor array fabrication using a color ink jet printer.Zool. Sci. 20: 429–434.

  35. [35]

    Turcu, F., K. Tratsk-Nitz, S. Thanos, W. Schuhmann, and P. Hieduschka (2003) Ink-jet printing for micropattern generation of laminin for neuronal adhesion.J. Neurosci. Meth. 131: 141–148.

  36. [36]

    Lee, B. H., J. W. Kim, K. Ishimoto, Y. Yamagata, A. Tanioka, and T. Nagamune (2003) Fabrication of protein microarrays for immunoassay using the electrospray deposition (ESD) method.J. Chem. Eng. Jap. 36: 1370–1375.

  37. [37]

    Wiese, R. (2003) Analysis of several fluorescent detector molecules for protein microarray use.Luminescence 18: 25–30.

  38. [38]

    Lundgren, J. S., A. N. Watkins, D. Racz, and F. S. Ligler (2000) A liquid crystal pixel array for signal discrimination in array biosensors.Biosens. Bioelectron. 15: 417–421.

  39. [39]

    Pawlak, M., E. Grell, E. Schick, D. Anselmetti, and M. Ehrat (1998) Functional immobilization of biomemrane fragments on planar waveguides for the investigation of side-directed ligand binding by surface-confined fluorescence.Faraday Discuss. 111: 273–288.

  40. [40]

    Rowe, C. A., L. M. Tender, M. J. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, and F. S. Ligler (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analyte.Anal. Chem. 71: 3846–3852.

  41. [41]

    Rowe, C. A., S. B. Scruggs, M. J. Feldstein, J. P. Golden, and F. S. Ligler (1999) An array immunosensor for simultaneous detection of clinical analyte.Anal. Chem. 71: 433–439.

  42. [42]

    Rowe, C. A., J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler (2000) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor.Biosens. Bioelectron. 15: 579–589.

  43. [43]

    Duveneck, G. L., M. Pawlak, and D. Neuschaefer (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides.Sens. Actuators B 38: 88–95.

  44. [44]

    Weinberger, S. R., T. S. Morris, and M. Pawlak (2003) Recent trends in protein biochip technology.Pharmacogenomics 1: 395–416.

  45. [45]

    Lizardi, P. M., X. H. Huang, Z. R. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward (1998) Mutation detection and single-molecule counting using isothermal rollingcircle amplification.Nat. Genet. 19: 225–232.

  46. [46]

    Schweitzer, B., S. Wiltshire, J. Lambert, S. O’Malley, K. Kukanskis, Z. R. Zhu, S. F. Kingsmore, P. M. Lizardi, and D. C. Ward (2000) Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection.Proc. Natl. Acad. Sci. USA 97: 10113–10119.

  47. [47]

    Schweitzer B., S. Roberts, B. Grimwade, W. P. Shao, M. J. Wang, Q. Fu, Q. P. Shu, I. Laroche, Z. M. Zhou, V. T. Tcherney, J. Chrstiansen, M. Velleca, and S. F. Kingsmore (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification.Nat. Biotechnol. 20: 359–365.

  48. [48]

    Huang, R. P., R. C. Huang, Y. Fan, and Y. Lin (2001) Simultaneous detection of multiple cytokines from conditioned media a patient’s sera by an antibody-based protein array system.Anal. Biochem. 294: 55–62.

  49. [49]

    Tu, C. Y., T. Kitamori, and T. Sawada (1993) Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy.Anal. Chem. 65: 3631–3635.

  50. [50]

    Sato, K., M. Tokeshi, T. Odake, H. Kimura, T. Oosi, M. Nakao, and T. Kitamori (2000) Integration of an immunoabsorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip.Anal. Chem. 72: 1144–1147.

  51. [51]

    Sato, K., M. Tokeshi, H. Kimura, and T. Kitamori (2001) Determination of carcinoembryonic antigen in human sera by intergrated bead-bed immunoassay in a microchip for cancer diagnosis.Anal. Chem. 73: 1213–1218.

  52. [52]

    Kimura, H., K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida (2001) Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances.Anal. Chem. 73: 4333–4337.

  53. [53]

    Silzel, J. W., B. Cercek, C. Dodson, T. Tsay, and R. J. Obremski (1998) Mass-sensing, multianalyte microarray immunoassay with imaging detection.Clin. Chem. 44: 2036–2043.

  54. [54]

    Joos, T. O., M. Schrenk, P. Hopfl, K. Kroger, U. Chowdhury, D. Stoll, D. Schorner, M. Durr, K. Herick, S. Rupp, K. Sohn, and H. Hammerle (2000) A microarray enzymelinked immunosorbent assay for autoimmune diagnostics.Eletrophoresis 21 2641–2650.

  55. [55]

    Harwanegg, C., S. Laffer, R. Hiller, M. W. Mueller, D. Kraft, S. Spitzauer, and R. Valenta (2003) Microarrayed recombinant allergens for diagnosis of allergy.Clin. Exp. Allergy 33: 7–13.

  56. [56]

    Barbara, I., B. Eberlein-Konig, H. Behrendt, R. Niessner, J. Ring, and M. G. Weller (2003) Microarrays for the screening of allergen-specific IgE in human serum.Anal. Chem. 75: 556–562.

  57. [57]

    Huang, R. P. (2001) Simultaneous detection of multiple proteins with an array-based enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescence (ECL).Clin. Chem. Lab. Med. 39: 209–214.

  58. [58]

    Wang, C. C., R. P. Huang, M. Sommer, H. Lioukov, R. C. Huang, Y. Lin, T. Miller, and J. Burke (2002) Array-based multiplexed screening and quantitation of human cytokines and chemokines.J. Proteome Res. 1: 337–343.

  59. [59]

    Belov, L., O. de la Vega, C. G. dos Remedios, S. P. Mulligan, and R. I. Christopherson (2001) Immunophenotype of leukemias using a cluster of differentiation antibody microarray.Cancer Res. 61: 4483–4489.

  60. [60]

    Belov, L., P. Huang, N. Barber, S. P. Mulligan, and R. I. Christopherson (2003) Identification of repertoires of surface antigens on leukemias using an antibody microarray.Proteomics 3: 2147–2154.

  61. [61]

    Miller, J. C., H. P. Zhou, J. Kwekel, R. Cavallo, J. Burke, E. B. Butler, B. S. The, and B. B. Haab (2003) Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers.Proteomics 3: 56–63.

Download references

Author information

Correspondence to Bum Hwan Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, B.H., Nagamune, T. Protein microarrays and their applications. Biotechnol Bioproc E 9, 69–75 (2004). https://doi.org/10.1007/BF02932987

Download citation


  • protein microarray
  • immunoassay
  • diagnostics
  • proteomics