Advertisement

Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 369–378 | Cite as

Preferential binding of the epidermal growth factor receptor to ganglioside GM3 coated plates

  • Mark A. Yednak
  • Eric G. Bremer
Article

Abstract

Ganglioside GM3 has been shown to modulate epidermal growth factor receptor function. These observations have lead to the hypothesis that GM3 may bind to the epidermal growth factor receptor. An enzyme-linked immunosorbant assay was designed to test this hypothesis. In these experiments, receptor-rich vesicle preparations were incubated with ganglioside GM1 or GM3 coated 96-well microtiter plates and the amount of bound receptor was compared. Plates coated with GM3 consistently bound more epidermal growth factor receptor than did GM1 coated wells appeared to be specific and saturable. These results suggest that GM3 may modulate epidermal growth factor receptor function owing to a specific association of the two molecules.

Index Entries

Gangliosides GM3 epidermal growth factor receptor lipid-protein interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremer E. G. (1994) Glycosphingolipids as effectors of growth and differentiation, inCell Lipids: from Synthesis to Cell Biology (Hoekstra, D., ed.), Academic, Orlando, FL (in press).Google Scholar
  2. Bremer E. G., and Hakomori S. (1982) GM3 ganglioside induces hamster fibroblast growth inhibition in chemical-defined medium: ganglioside may regulated growth factor receptor function.Biochem. Biophys. Res. Commun. 106, 711–728.CrossRefGoogle Scholar
  3. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., and Ross R. (1984) Ganglioside-mediated modulation of cell growth, growth factor binding and receptor phosphorylation.J. Biol. Chem. 259, 6818–6825.PubMedGoogle Scholar
  4. Bremer E. G., Schlessinger J., and Hakomori S. (1986) Ganglioside-mediated modulation of cell growth: specific effects of GM3 on tryosine phosphorylation of the epidemal growth factor receptor.J. Biol. Chem. 261, 2434–2440.PubMedGoogle Scholar
  5. Cheresh D. A., Pierschbacher M. D., Herzig M. A., and Mujoo K. (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins.J. Cell Biol. 102, 688–694.CrossRefGoogle Scholar
  6. Davidsson P., Fredman P., Collins F. P., von Holst H., Mansson J.-E., and Svennerholm L. (1989) Ganglioside composition in human meningiomas.J. Neurochem. 53, 705–790.CrossRefGoogle Scholar
  7. Fredman P. (1988) Gangliosides in human malignant gliomas, inNew Trends in Ganglioside Research: Neurochemical and Neurogenerative Aspects (Ledeen R. W., Hogan E. L., Tettamanti G., Yates A., and Yu R. K., eds.), pp. 161, 161, Liviana Press, Padova.Google Scholar
  8. Gillard B. K., Thomas J. W., Nell L. J., and Marcus D. M. (1989) Antibodies against ganglioside GT3 in the sera of patients with type I diabetes mellitus.J. Immunol. 142, 3826–3832.PubMedGoogle Scholar
  9. Hakomori S. (1981) Glycosphingolipids in cellular interaction, differentiation and oncogenesis.Annu. Rev. Biochem. 50, 733–764.CrossRefGoogle Scholar
  10. Hakomori S. (1990) Bifunctional roles of glycosphingolipids. Modulators for transmembrane signalling and mediators for cellular interactions.J. Biol. Chem. 265, 18713–18716.PubMedGoogle Scholar
  11. Hanai N., Dohi T., Nores G. A., and Hakomori S. (1988) A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epiderman growth factor receptor kinase and as a stimulator for cell growth.J. Biol. Chem. 263, 6296–6301.PubMedGoogle Scholar
  12. Hermanson M., Funa K., Hartman M., Claesson-Welsh L., Heldin C. H., Westermark B., and Nister M. (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops.Cancer Res. 52, 3213–3219.PubMedGoogle Scholar
  13. Humphrey P. A., Wong A. J., Vogelstein B., Zalutsky M. R., Fuller G. N., Archer G. E., Friedman H. S., Kwatra M. M., Bigner S. H., and Bigner D. D. (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma.Proc. Natl. Acad. Sci. USA 87, 4207–4211.CrossRefGoogle Scholar
  14. Ledeen R. W. and Yu R. K. (1982) Gangliosides: structure, isolation, and analysis.Meth. Enzymol. 83, 139.CrossRefGoogle Scholar
  15. Libermann T. A., Razon N., Bartal A. D., Yarden Y., Schlessinger J., and Soreq H. (1984) Expression of epidermal growth factor receptors in human brain tumors.Cancer Res 44, 753–760.PubMedGoogle Scholar
  16. Lin P. H. Selinfreund R., Wakshull E., and Wharton W. (1987) Rapid and efficient purification of plasma membrane from cultured cells: characterization of epidermal growth factor binding.Biochemistry 26, 731–736.CrossRefGoogle Scholar
  17. Markwell M. A. (1982) A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum.Anal. Biochem. 125, 427–432.CrossRefGoogle Scholar
  18. Momoi T., Ando S., and Nagai Y. (1976) High resolution preparative column chromatographic system for gangliosides using DEAE-Sephadex and a new porus silica, Iatrobeads.Biochim. Biophys. Acta 441, 488–497.CrossRefGoogle Scholar
  19. Nojiri H., Stroud M., and Hakomori S. (1991) A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity: possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction of HL-60 cells.J. Biol. Chem. 266, 4531–4537.PubMedGoogle Scholar
  20. Peterson G. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable.Anal. Biochem. 83, 346–356.CrossRefGoogle Scholar
  21. Sack D. A., Huda S., Neogi P. K., Daniel R. R., and Spira W. M. (1980) Microtiter ganglioside enzyme-linked immunosorbent assay forVibrio andEscherichia coli heat-labile enterotoxins and antitoxin.J. Clin. Microbiol. 11, 35–40.PubMedPubMedCentralGoogle Scholar
  22. Schengrund C. L., Repman M. A., and Shochat S. J. (1985) Ganglioside composition of human neuroblastomas.Cancer 56, 2640–2646.CrossRefGoogle Scholar
  23. Tiemeyer M., Yasuda Y., and Schnaar R. L. (1989) Ganglioside-specific binding protein on rat brain membranes.J. Biol. Chem. 264, 1671–1681.PubMedGoogle Scholar
  24. Toffano G., Benvegnu D., Bonetti A. C., Facci L., Leon A., Orlando P., Ghidoni R., and Tettamanti G. (1980) Interactions of GM1 ganglioside with crude rat brain neuronal membranes.J. Neurochem. 35, 861–866.CrossRefGoogle Scholar
  25. Tsuruoka T., Tsuji T., Nojiri H., Holmes E. H., and Hakomori S. (1993) Selection of a mutant cell line based on differential expression of glycosphingolipid, utilizing anti-lactosyl-ceramide antibody and complement.J. Biol. Chem. 268, 2211–2216.PubMedGoogle Scholar
  26. Wong A. J., Bigner S. H., Bigner D. D., Kinzler K. W., Hamilton S. R., and Vogelstein B. (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification.Proc. Natl. Acad. Sci. USA 84, 6899–6903.CrossRefGoogle Scholar
  27. Yarden Y., Harari I., and Schlessinger J. (1985) Purification of an active EGF receptor kinase with monoclonal antireceptor antibodies.J. Biol. Chem. 260, 315–319.PubMedGoogle Scholar
  28. Yates A. J., Van Brocklyn J., Saqr H. E., Guan Z., Stokes B. T., and O’Dorisio M. S. (1993) Mechanisms through which gangliosides inhibit PDGF-stimulated mitogenesis in intact Swiss 3T3 cells: receptor tyrosine phosphorylation, intracellular calcium, and receptor binding.Exp. Cell Res. 204, 38–45.CrossRefGoogle Scholar
  29. Zeller C. B. and Marchase R. B. (1992) Gangliosides as modulators of cell function.Am. J. Physiol. 262, 1341–1355.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Mark A. Yednak
    • 1
  • Eric G. Bremer
    • 1
    • 2
  1. 1.Department of Immunology/MicrobiologyRush UniversityChicago
  2. 2.Chicago Institute for Neurosurgery and NeuroresearchChicago

Personalised recommendations