Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 219–239 | Cite as

In vivo and in vitro models of medulloblastomas and other primitive neuroectodermal brain tumors of childhood

  • John Q. Trojanowski
  • Kar-Ming Fung
  • Lucy B. Rorke
  • Takashi Tohyama
  • Anthony T. Yachnis
  • Virginia M. -Y. Lee


Recent advances in understanding the basic biology of the neoplastic cells that populate childhood primitive neuroectodermal tumors (PNET) of the central nervous system (CNS) underline several unique properties of these common pediatric brain neoplasms. For example, studies of posterior fossa cerebellar medulloblastomas (MB), a prototypical group of brain tumors that comprise the largest class of PNET, suggest that the molecular phenotype of subpopulations of neoplastic cells in MB partially recapitulates stages in the acquisition of the neuronal phenotype by normal developing human CNS progenitor cells. However, as reviewed here, it appears that the neoplastic cells in MB exhibit one or more molecular defects in the sequence of normal maturational events that enable CNS progenitor cells to exit the cell cycle, become committed to the neuronal lineage, and undergo terminal differentiation into fully mature, permanently postmitotic CNS neurons. Indeed, since PNET emerge almost exclusively in early childhood, the induction of PNET may result from genetic lesions that arise in developing CNS progenitor cells thereby preventing these neural precursors from executing normal programs of lineage commitment and differentiation in the CNS. Clarification of how lineage commitment and maturation in PNET comprised of neuron-like tumor cells deviate from normal CNS development may clarify how oncogenes and tumor suppressor genes exert their effects in a cell type specific manner at different stages in the normal maturation of CNS cells. Recently, a number of potentially effective in vitro and in vivo model systems of PNET have been developed. Since these model systems could facilitate efforts to elucidate mechanisms of neoplastic transformation and tumor progression in the CNS, we review, the potential utility of several recently described in vitro (e.g., MB cell lines) and in vivo (e.g., transgenic mice) experimental systems as models of authentic childhood CNS neoplasms.

Index Entries

Transgenic mice medulloblastoma cell lines neuronal development progenitor cells oncogenes tumor suppressor genes gliomas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbasak A., Sunar-Akbasak B. (1992) Oncogenes: Cause or consequence in the development of glial tumors.J. Neurol. Sci. 111, 119–133.CrossRefGoogle Scholar
  2. Altman J. (1992) Programmed cell death: The paths to suicide.Trends Neurosci. 15, 278–280.CrossRefGoogle Scholar
  3. Al-Ubaidi M. R., Font R. L., Quiambao A. B., Keener M. J., Liou G. I., Overbeck P. A., et al. (1992) Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promotor.J. Cell Biol. 119, 1681–1687.CrossRefGoogle Scholar
  4. Archer G. E., Trojanowski J. Q., Fuchs H. E. and Bigner D. D. (1993) Immunological aspects of neuro-oncology, inNeuro-oncology (Keyser, A., Ongerboser de Visser, B. W., and Twijnstra A., eds.), pp. 75–96, Elsevier, Amsterdam.Google Scholar
  5. Baker D. L., Ready U. R., Pleasure S., Hardy M., Williams M., Tartaglione M., Biegel J. A., Emanuel B., Lo Presti P., Kreider B., Trojanowski J. Q., Evans A., Roy A., Venakatkrishnan G., Chen J., Ross A. H., and Pleasure D. (1990) Human central nervous system primitive neuroectodermal tumor expressing NGF receptors: CHP707m.Ann. Neurol. 28, 136–145.CrossRefGoogle Scholar
  6. Baker D. L., Molenaar W. M., Trojanowski J. Q., Evans A. E., Ross A. H., Rorke L. B., Packer R., Lee V. M.-Y., and Pleasure D. (1991) Nerve growth factor receptor expression in peripheral and central primitive neuroectodermal tumors other pediatric brain tumors and during development of the adrenal gland.Am. J. Pathol. 139, 114–122.Google Scholar
  7. Biegel J. A. and Emanuel B. S. (1992) Cytogenetic abnormalities in central nervous system tumors of childhood, inNew Trends in Pediatric Neuro-Oncology (Bleyer A., Packer R., and Pochedly C., eds.), pp. 33–41, Harwood, NY.Google Scholar
  8. Biegel J. A., Rorke L. B., Packer R. J., Sutton L. N., Schut L., Bonner K., and Emanuel B. S. (1989) Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system.Genes, Chrom. Cancer 1, 139–147.CrossRefGoogle Scholar
  9. Bishop J. M. (1991) Molecular themes in oncogenesis.Cell 64, 235–248.CrossRefGoogle Scholar
  10. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., and Lee V. M.-Y. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns.J. Neurosci. 7, 3489–3504.CrossRefGoogle Scholar
  11. Cavenee W. K. (1992) Accumulation of genetic defects during astrocytoma progression.Cancer 70, 1788–1793.CrossRefGoogle Scholar
  12. Chao M. V. (1992) Neurotrophin receptors: A window into neuronal differentiation.Neuron 9, 583–593.CrossRefGoogle Scholar
  13. Clarke A. R., Maandag E. R., van Roon M., van der Lugt N. M. T., van der Valk M., Hooper M. L., Berns A., and te Riele H. (1992) Requirement for a functional Rb-1 gene in murine development.Nature 359, 328–330.CrossRefGoogle Scholar
  14. Cross M. and Dexter T. M. (1991) Growth factors in development, transformation, and tumorigenesis.Cell 64, 271–280.CrossRefGoogle Scholar
  15. Culver K. W., Ram Z., Wallbridge S., Ishii, H., Oldfield E. H., and Blaese R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors.Science 256, 1550–1552.CrossRefGoogle Scholar
  16. Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Butel J. S., and Bradley A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors.Nature 356, 215–221.CrossRefGoogle Scholar
  17. Feddersen R. M., Ehlenfeldt R., Yunis W. S., Clark H. B., and Orr H. T. (1992) Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice.Neuron 9, 955–966.CrossRefGoogle Scholar
  18. Ferrer I., Soriano E., Del Rio J. A., Alcantara S., and Auladell C. (1992) Cell death and removal in the cerebral cortex during development.Prog. Neurobiol. 39, 1–43.CrossRefGoogle Scholar
  19. Friedman H. S., Burger P. C., Bigner S. H., Trojanowski J. Q., Brodeur G. M., He X., Wikstrand C. J., Kurtzburg J., Berens, M. E., Halperin E. C., and Bigner D. D. (1988) Phenotypic and genotypic analysis of a human medulloblastoma cell line and transplantable xenograft (D341 Med) demonstrating amplifications of c-myc.Am. J. Pathol. 130, 472–484.PubMedPubMedCentralGoogle Scholar
  20. Friedman H. S., Burger P. C., Bigner S. H., Trojanowski J. Q., Wikstrand C. J., Halperin E. C., and Bigner D. D. (1985) Establishment, and characterization of the human medulloblastoma cell line and transplantable xenograft D283 MED.J. Neuropath. Exper. Neurol. 44, 592–605.CrossRefGoogle Scholar
  21. Fung K.-M., Chikaraishi D. M., Suri C., Theuring T., Messing A., Albert D. M., Lee V. M.-Y., and Trojanowski J. Q. (1994) Molecular phenotype of simian virus V40-Large T antigen induced primitive neuroectodermal tumors in four different lines of transgenic mice.Lab. Invest. 70, 114–124.PubMedGoogle Scholar
  22. Fung K.-M., Messing A., Lee V. M.-Y., and Trojanowski J. Q. (1992) A novel modification of the avidin-biotin-complex method for immunohistochemical studies of transgenic mice using murine monoclonal antibodies.J. Histochem. Cytochem. 40, 1319–1328.CrossRefGoogle Scholar
  23. Gillaspy G. E., Mapstone T. B., Samols D., and Goldthwait D. A. (1992) Transcriptional patterns of growth factors and proto-oncogenes in human glioblastomas and normal glial cells.Cancer Lett. 65, 55–60.CrossRefGoogle Scholar
  24. Gould V. E., Jansson D. S., Molenaar W. M., Trojanowski J. Q., Lee V. M.-Y., Packer R. J., and Franke W. W. (1990a) Primitive neuroectodermal tumors of the central nervous system. Expression of neuroendocrine markers and all classes of intermediate filaments.Lab. Invest. 62, 498–509.PubMedGoogle Scholar
  25. Gould V. E., Jansson D. S., Molenaar W. M., Trojanowski J. Q., Lee V. M.-Y., Packer R. J., and Franke W. W. (1990b) Primitive neuroectodermal tumors of the central nervous system express neuroendocrine markers and may express all classes of intermediate filaments.Human Pathol. 21, 245–252.CrossRefGoogle Scholar
  26. Hammang J. P., Baetge E. E., Behringer R. R., Brinster R. L., Palmiter R. D., and Messing A. (1990) Immortalized retinal neurons derived from SV40 T-antigen-induced tumors in transgenic mice.Neuron 4, 775–782.CrossRefGoogle Scholar
  27. Hartwell L. (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells.Cell 71, 543–546.CrossRefGoogle Scholar
  28. He X., Skapek S., Wikstrand C. J., Friedman H. S., Trojanowski J. Q., Kemstead J. T., Coakham H. B., Bigner S. H., Bigner D. D. (1989) Phenotypic analysis of four human medulloblastoma cell lines and transplantable xenografts.J. Neuropathol. Exper. Neurol. 48, 48–68.CrossRefGoogle Scholar
  29. He X., Wikstrand C. J., Friedman H. S., Bigner S. H., Pleasure S., Trojanowski J. Q., and Bigner D. D. (1991) Antigenic profiles of newly established medulloblastoma cell lines (D283 Med, D425 Med, and D458 Med) and their transplantable xenografts.Lab. Invest. 64, 833–843.PubMedGoogle Scholar
  30. Herman M. M., Perentes E., Katsetos C. D., Darcel F., Frankfurter A., Collins V. P., Donoso L. A., Eng L. F., Marangos P. J., Wiechmann A. F., May E. E., Thomas C. B., and Rubinstein L. J. (1989) Neuroblastic differentiation potential of the human retinoblastoma cell lines Y-79 and WERI-Rbl maintained in and organ culture system. An immonohistochemical, electron microscopic, and biochemical study.Am. J. Pathol. 134, 115–132.PubMedPubMedCentralGoogle Scholar
  31. Hunter T. (1991) Cooperation between oncogenes.Cell 64, 249–270.CrossRefGoogle Scholar
  32. Jacks T., Fazelli A., Schmitt E. M., Bronson R. T., Goodell M. A., and Weinberg R. A. (1992) Effects of an Rb mutation in the mouse.Nature 359, 295–300.CrossRefGoogle Scholar
  33. Jacobsen P. F., Jenkyn D. J., and Papadimitriou J. M. (1985) Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice.J. Neuropath. Exper. Neurol. 44, 472–485.CrossRefGoogle Scholar
  34. Kivela T., Virtanen I., Marcus D. M., O’Brien J. M., Carpenter J. L., Brauner E., et al. (1991) Neuronal and glial properties of murine transgenic retinoblastoma model.Am. J. Pathol. 138, 1135–1148.PubMedPubMedCentralGoogle Scholar
  35. Korf H.-W., Goetz W., Herken R., Theuring F., Gruss P., and Schachenmayr W. (1990) S-antigen and rod-opsin immunoreactions in midline brain neoplasms of transgenic mice: Similarities to pineal cell tumors and certain medulloblastomas in man.J. Neuropath. Exper. Neurol. 49, 424–437.CrossRefGoogle Scholar
  36. Lee E. Y.-H., Chang C.-Y., Hu N., Wang Y.-C. J., Lai C.-C., Herrup K., Lee W.-H., and Bradley A. (1992) Mice deficient for Rb nonviable and show defects in neurogenesis and hematopoiesis.Nature 359, 288–294.CrossRefGoogle Scholar
  37. Lee J. H., GoedertM., Hill W. D., Lee V. M.-Y., and Trojanowski J. Q. (1993) Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer’s disease and developmentally regulated in fetal spinal cord.Exper. Neurol. 121, 93–105.CrossRefGoogle Scholar
  38. Lee V.M.-Y. and Andrews P. W. (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins.J. Neurosci. 6, 514–521.CrossRefGoogle Scholar
  39. Lee V. M.-Y., Carden M. J., Schlaepfer W. W., and Trojanowski J. Q. (1987) Monocoonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.J. Neurosci. 7, 3474–3488.CrossRefGoogle Scholar
  40. Lendahl U., Zimmerman L. B., and McKay R. D. G. (1990) CNS stem cells express a new class of intermediate filament protein.Cell 60, 585–595.CrossRefGoogle Scholar
  41. McAllister R. M., Isaacs H., Rongey R., Peer M., Au W., Soukup S. W., and Gardner M. B. (1977) Establishment of a human medulloblastoma cell line.Int. J. Cancer 20, 206–212.CrossRefGoogle Scholar
  42. MacGregor D. N. and Ziff E. B. (1990) Elevated c-myc expression in childhood meduloblastomas.Pediatr. Res. 28, 63–68.CrossRefGoogle Scholar
  43. Marcus D. M., Carpenter J. L., O’Brien J. M., Kivela T., Brauner E., Tarkkanen A., et al. (1991) Primitive neuroectodermal tumor of the midbrain in a murine model of retinolastoma.Invest. Ophthalmol. Vis. Sci. 32, 293–301.PubMedGoogle Scholar
  44. Maraziotis T., Perentes E., Karamitopoulou E., Nakagawa Y., Gessaga E. C., Probst A., et al. (1992) Neuron-associated class III β-tubulin isotype, retinal S-antigen, synaptophysin, and glial fibrillary acidic protein in human medulloblastomas: A clinicopathological analysis of 36 cases.Acta Neuropathol. 84, 355–363.CrossRefGoogle Scholar
  45. Molenaar W. M., Baker D. L., Pleasure D., Lee V. M.-Y., and Trojanowski J. Q. (1990a) The neuroendocrine, and neural profiles of neuroblastomas, ganglioneuroblastomas and ganglioneuromas.Am. J. Pathol. 136, 375–382.PubMedPubMedCentralGoogle Scholar
  46. Molenaar W. M., Delay L., and Trojanowski J. Q. (1991) Neuroectodermal tumors of the central and peripheral nervous system share neuroendocrine antigens with small cell lung carcinomas.Acta Neuropathol. 83, 46–54.CrossRefGoogle Scholar
  47. Molenaar W. M., Jansson D. S., Gould V. E., Rorke L. B., Franke W. W., Lee V. M.-Y., Packer R. J., and Trojanowski J. Q. (1989) Molecular markers of primitive neuroectodermal tumors (PNETs) and other pediatric central nervous system tumors. Monoclonal antibodies to neuronal and glial antigens distinguish subsets of PNETs.Lab. Invest. 61, 635–643.PubMedGoogle Scholar
  48. Molenaar W. M., Lee V. M.-Y., and Trojanowski J. Q. (1990b) Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase and neuronal cytoskeletal proteins.Exper. Neurol. 108, 1–9.CrossRefGoogle Scholar
  49. Molenaar W. M. and Trojanowski J. Q. (1991) Biological markers of glial and primitive tumors, inNeurobiology of Brain Tumors, vol. 4: Concepts in Neurosurgery (Salcman M., ed.), pp. 185–210, Williams & Wilkins, Baltimore, MD.Google Scholar
  50. Morshead C. M. and van der Kooy, D. (1992) Postmitotic death is the fate of constitutively proliferating cell in the subependymal layer of the adult mouse brain.J. Neurosci. 12, 249–256.CrossRefGoogle Scholar
  51. Pattengale P. K., Stewart T. A., Leder A., Sinn E., Muller W., Tepler I., Schmidt E., and Leder P. (1992) Animal models of human disease: Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes.Am. J. Pathol. 135, 39–61.Google Scholar
  52. Pleasure S., Page C., and Lee V. M.-Y. (1992) Pure, post-mitotic, polarized human neurons derived from NTera2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons.J. Neurosci. 12, 1802–1815.CrossRefGoogle Scholar
  53. Pleasure S., Reddy R. U., Venkatakrishnan G., Roy A. K., Chen J., Ross A. H., Trojanowski J. Q., Pleasure D. E., and Lee V. M.-Y. (1990) Clonal human medulloblastoma cells infected with a retrovirus coding for the human nerve growth factor (NGF) receptor (NGFR) express high and low affinity NGFRs but do not differentiate in response to NGF.Proc. Natl. Acad. Sci. USA 87, 8496–8500.CrossRefGoogle Scholar
  54. Reynolds B. A. and Weiss S. (1992) Generation of neurons and astroyctes from isolated cells of the adult mammalian central nervous system.Science 255, 1707–1710.CrossRefGoogle Scholar
  55. Rohrer H. (1990) The role of growth factors in the control of neurogenesis.Eur. J. Neurosci. 2, 1005–1015.CrossRefGoogle Scholar
  56. Rorke L. B. (1983) The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors.J. Neuropathol. Exper. Neurol. 42, 1–15.CrossRefGoogle Scholar
  57. Rorke L. B., Molenaar W. M., and Trojanowski J. Q. (1992) The impact of monoclonal antibody studies on changing nosology and biological concepts of brain tumors, inNew Trends in Pediatric Neuro-oncology (Bleyer A., Packer R., and Pochedly C., eds.), pp. 8–31, Hardwood, NY.Google Scholar
  58. Russell D. S. and Rubinstein L. J. (1989)Pathology of Tumors of the Nervous System, 5th ed., Williams & Wilkins, Baltimore, MD.Google Scholar
  59. Sawyers C. L., Denny C. T., and Witte O. N. (1991) Leukemia and the disruption of normal hematopoesis.Cell 64, 337–350.CrossRefGoogle Scholar
  60. Saylors R. L., Sidransky D., Friedman H. S., Bigner S. H., Bigner D. D., Vogelstein B., and Brodeur G. M. (1991) Infrequent p53 gene mutations in medulloblastomas.Cancer Res. 51, 4721–4723.PubMedGoogle Scholar
  61. Seemayer T. A. and Cavenee W. K. (1990) Molecular mechanisms of oncogenesis.Lab. Invest. 60, 585–599.Google Scholar
  62. Seizinger B. R. (1992) Antioncogenes and the development of tumors in the human nervous system.Cancer 70, 1782–1787.CrossRefGoogle Scholar
  63. Shaw G. (1990) Neurofilament proteins, inThe Neuronal Cytoskeleton (Burgoyne R. D., ed.), pp. 183–212, Wiley-Liss, NY.Google Scholar
  64. Stratton M. R., Darling J., Pilkington G. J., Lantos P. L., Reeves B. R., and Cooper C. S. (1989) Characterization of the human cell line TE671.Carcinogenesis 10, 899–905.CrossRefGoogle Scholar
  65. Suri C., Fung B. P., Tischler A. S., and Chikaraishi D. M. (1993) Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice.J. Neurosci. 13, 1280–1291.CrossRefGoogle Scholar
  66. Tamamura K., Shimizu K., Yamada M., Okamoto Y., Matsui Y., Park K. C., Mabuchi E., Moriuchi S., and Mogami H. (1989) Expression of major histocompatibility complex on human medulloblastoma cells with neuronal differentiation.Cancer Res. 49, 5380–5384.Google Scholar
  67. Theuring F., Goetz W., Balling R., Korf H.-W., Schultze F., Herken R., et al. (1990) Tumorigenesis and eye abnormalities in transgenic mice expressing MSV-SV40 large T-antigen.Oncogene 5, 225–232.PubMedGoogle Scholar
  68. Tohyama T., Lee V. M.-Y., Rorke L. B., Marvin M., McKay R. D. G., and Trojanowski J. Q. (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumors.Lab Invest. 66, 303–313.PubMedGoogle Scholar
  69. Tohyama T., Lee V. M.-Y., Rorke L. B., Marvin M., McKay R. D. G., and Trojanowski J. Q. (1993a) Monoclonal antibodies to a rat nestin fusion protein recognize a 220 kiloDalton polypeptide in subsets of fetal and adult human central nervous system neurons and in primitive neuroectodermal tumor cells.Am. J. Pathol. 143, 258–268.PubMedPubMedCentralGoogle Scholar
  70. Tohyama T., Lee V. M.-Y., Rorke L. B., and Trojanowski J. Q. (1991) Molecular milestones that signal axonal maturation and the committment of human spinal cord precursor cells to the neuronal or glial phenotype in development.J. Comp. Neurol. 310, 285–299.CrossRefGoogle Scholar
  71. Tohyama T., Lee V. M.-Y., and Trojanowski J. Q. (1993b) Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines.Am. J. Pathol. 142, 883–892.Google Scholar
  72. Trojanowski J. Q., Friedman H. S., Burger P. C., and Bigner D. D. (1985) A rapidly dividing human medulloblastoma cell line (D283 MED) expresses all three neurofilament subunits.Am. J. Pathol. 126, 358–363.Google Scholar
  73. Trojanowski J. Q., Kelsten M. L., and Lee V. M.-Y. (1989) Phosphate dependent and independent neurofilament epitopes are expressed throughout the cell cycle in rapidly dividing human medulloblastoma cells.Am. J. Pathol. 135, 747–758.PubMedPubMedCentralGoogle Scholar
  74. Trojanowski J. Q., Molenaar W. M., Baker D. L., Pleasure D., and Lee V. M.-Y. (1991a) Neural and neuroendocrine phenotype of neuroblastomas, ganglioneuroblastomas, and mature versus embryonic human adrenal medullary cells, inProgress in Clinical and Biological Research, Vol. 366, Advances in Neuroblastoma Research 3 (Evans A. E., D’Angio G. J., Knudson A. G., Jr., and Seeger R. C., eds.), pp. 335–342, Wiley-Liss, NY.Google Scholar
  75. Trojanowski J. Q., Newman P. D., Hill W. D., and Lee V. M.-Y. (1991b) Human olfactory epithelium in normal aging, Alzheimer’s disease and other neuro-degenerative diseases.J. Comp. Neurol. 310, 365–376.CrossRefGoogle Scholar
  76. Trojanowski J. Q., Lee V., Pillsbury N., and Lee S. (1982) Neuronal origin of esthesioneuroblastoma demonstrated with anti-neurofilament monoclonal antibodies.N. Engl. J. Med. 307, 159–161.CrossRefGoogle Scholar
  77. Trojanowski J. Q. and Tohyama T. (1991) Molecular markers and new methods in neuropathology: Central nervous system stem cell tumors.Curr. Opin. Neurol. Neurosurg. 4, 875–879.Google Scholar
  78. Trojanowski J. Q., Tohyama T., and Lee V. M.-Y. (1992) Medulloblastomas and related primitive neuroectodermal brain tumors of childhood recapitulate molecular milestones in the maturation of neuroblasts.Mol. Chem. Neuropathol. 17, 121–135.CrossRefGoogle Scholar
  79. Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: A review.Brain Res. Rev. 15, 101–120.CrossRefGoogle Scholar
  80. Valtz N. L. M., Hayes T. E., Norregaard T., Liu S., and McKay R. D. G. (1991) An embryonic origin for medulloblastoma.New Biol. 3, 364–371.PubMedGoogle Scholar
  81. Virtanen I., Kivela T., Bugnoli M., Mencarelli C., Pallini V., Albert D., and Tarkkanen A. (1988) Expression of intermediate filaments and synaptophysin show neuronal properties and lack of glial characteristics in Y79 retinoblastoma cells.Lab. Invest. 59, 649–656.PubMedGoogle Scholar
  82. Williams G. T. (1991) Programmed cell death: Apoptosis and oncogenesis.Cell 65, 1097–1098.CrossRefGoogle Scholar
  83. Yachnis A. T., Rorke L. B., Lee V. M.-Y., and Trojanowski J. Q. (1993) Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus.J. Comp. Neurol. 334, 356–369.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • John Q. Trojanowski
    • 1
  • Kar-Ming Fung
    • 1
  • Lucy B. Rorke
    • 2
  • Takashi Tohyama
    • 3
  • Anthony T. Yachnis
    • 2
  • Virginia M. -Y. Lee
    • 1
  1. 1.The Department of Pathology and Laboratory Medicine, Division of Anatomical PathologyThe University of Pennsylvania School of MedicinePhiladelphia
  2. 2.Children’s Hospital of PhiladelphiaPhiladelphia
  3. 3.The Department of NeurosurgeryTokyo Womens Medical SchoolTokyoJapan

Personalised recommendations