Advertisement

Molecular and chemical neuropathology

, Volume 21, Issue 2–3, pp 155–176 | Cite as

Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas

  • Hsi-Yuan Yang
  • Norman Lieska
  • Deren Shao
  • Virginia Kriho
  • George D. Pappas
Article

Abstract

There is a pressing need for a more accurate system of classifying human astrocytomas, one that is based on morphologic characteristics and that could also make use of distinctive biochemical markers. However, little is known about the phenotypic characteristics of astrocytomas. Recent studies have shown that the expression of proteins comprising the intermediate filament (IF) cytoskeleton of astrocytic cells is developmentally regulated. It is our hypothesis that this changing protein profile can be used as the basis of a system for clearly and objectively classifying astrocytomas. A spectrum of human astrocytomas has been examined by immunofluorescence microscopy employing antibodies to several IF structural subunit proteins (GFAP, vimentin, and keratins) and an IF-associated protein IFAP-300kDa. These proteins occupy unique temporal niches in the cytogenesis of the astrocytic cells: keratins in cells of the neuroectoderm; vimentin and IFAP-300kDa in radial glia and immature glia; GFAP in mature astrocytes; and vimentin in some mature astrocytes. In agreement with previous reports, our immunofluorescence studies have revealed both GFAP and vimentin in all astrocytoma specimens. Two new observations, however, are of particular interest: IFAP-300kDa is detectable in all astrocytic tumors, and the proportion of keratin-containing cells present in the astrocytomas is in direct relationship to the degree of the malignancy. Because IFAP-300kDa is not present in either normal mature or reactive astrocytes, this protein appears to represent a specific marker of transformed (malignant) astrocytes. If it is presumed that higher malignancy grades represent the most dedifferentiated cellular state of the astrocytes, the presence of keratin-containing cells is not totally unexpected, given the ectodermal (epithelial) origin of the CNS. Specific developmentally regulated proteins of the IF cytoskeleton thus appear to hold great potential as diagnostic markers of astrocytomas and as tools for investigating the biology of these tumors.

Index Entries

Astrocyte astrocytoma cytoskeleton glioma intermediate filaments intermediate filament-associated proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El-Basset E. M., Kalnins V. I., Subrahmanyan L., Ahmed I., and Fedoroff S. (1988a). 48-kilodalton intermediate-filament-associated protein in astrocytes.J. Neurosci. Res. 19, 1–13.CrossRefGoogle Scholar
  2. Abd-El-Basset E M., Kalnins V. I., and Fedoroff S. (1988b) Expression of 48-kilodalton intermediate filament-associated protein in differentiating and in mature astrocytes in various regions of the central nervous system.J. Neurosci. Res. 21, 226–237.CrossRefGoogle Scholar
  3. Aebi U., Cohn J., Buhle L., and Gerace L. (1986) The nuclear lamina is a meshwork of intermediate-type filaments.Nature 323, 560–564.CrossRefGoogle Scholar
  4. Albers K. and Fuchs E. (1992) The molecular biology of intermediate filament proteins.Intl. Rev. Cytol. 134, 243–279.CrossRefGoogle Scholar
  5. Alvord E. C., Jr. (1992) Is necrosis helpful in the grading of gliomas?J. Neuropathol. Exp. Neurol. 51, 127–132.CrossRefGoogle Scholar
  6. Antanitus D. S., Choi B. H., and Lapham L. W. (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence.Brain Res. 103, 613–616.CrossRefGoogle Scholar
  7. Bailey P. and Cushing H. (1926)A Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis, J.B. Lippincott Co., Philadelphia.Google Scholar
  8. Bignami A., Eng L. F., Dahl D., and Uyeda C. T. (1972) Localization of the glial fibrillary acidic protein, in astrocytes by immunofluorescence.Brain Res. 43, 429–435.CrossRefGoogle Scholar
  9. Bignami A., Raju T., and Dahl D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons.Dev. Biol. 91, 286–295.CrossRefGoogle Scholar
  10. Bjorklund H., Eriksdotter-Nilsson M., Dahl D., and Olson L. (1984) Astrocytes in smears of CNS tissues as visualized by GFA and vimentin immunofluorescence.Med. Biol. 62, 38–48.PubMedGoogle Scholar
  11. Bloom G. S. and Vallee R. B. (1983) Association of microtubule associated protein 2 (MAP-2) with microtubules and intermediate filaments in cultured brain cells.J. Cell Biol. 96, 1523–1531.CrossRefGoogle Scholar
  12. Bongcam-Rudloff E., Nister M., Betsholtz C., Wang J.-L., Stenman G., Huebner K., Croce C. M., and Westermark B. (1991) Human glial fibrillary acidic protein: Complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes.Cancer Res. 51, 1553–1560.PubMedGoogle Scholar
  13. Bovolenta P., Liem R. K., and Mason C. A. (1984) Development of cerebellar astroglia: Transitions in form and cytoskeletal content.Dev. Biol. 102, 248–259.CrossRefGoogle Scholar
  14. Breckler J. and Lazarides E. (1982) Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle.J. Cell Biol. 92, 795–806.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burger P. C., Vogel F. S., Green S. B., and Strike T. A. (1985) Glioblastoma and anaplastic astrocytoma: Pathologic criteria and prognostic implications.Cancer 56, 1106–1111.CrossRefGoogle Scholar
  16. Burger P. C., Vogel F. S., and Scheithauer B. (1989)Surgical Pathology of the Nervous System and Its Coverings, 3rd ed., Wiley, New York.Google Scholar
  17. Chabot P. and Vincent M. (1990) Transient expression of an intermediate filament-associated protein (IFAPa-400) duringin vivo andin vitro differentiation of chick embryonic cells derived from neuroectoderm.Dev. Brain Res. 54, 195–204.CrossRefGoogle Scholar
  18. Chisholm J. C. and Houliston E. (1987) Cytokeratin filament assembly in the pre-implantation mouse embryo.Development 101, 565–582.PubMedGoogle Scholar
  19. Choi B. H. (1981) Radial glia of developing fetal spinal cord: Golgi, immuno-histochemical and electron microscopic study.Dev. Brain Res. 1, 249–267.CrossRefGoogle Scholar
  20. Choi B. H. (1986) Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study.J. Neuropathol. Exp. Neurol. 45, 408–418.CrossRefGoogle Scholar
  21. Choi B. H. (1990) Gliogenesis in the developing human fetal brain, inDifferentiation and Functions of Glial Cells. (G. Levi, ed.), Wiley-Liss, New York, pp. 9–16.Google Scholar
  22. Choi B. H. and Lapham L. W. (1978) Radia glial in the human fetal cerebrum: A combined Golgi, immunofluorescent and electron microscopic study.Brain Res. 148, 295–311.CrossRefGoogle Scholar
  23. Ciment G., Resler A., Letourneau P. C., and Weston J. A. (1986) A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development.J. Cell Biol. 102, 246–251.CrossRefGoogle Scholar
  24. Cosgrove M., Fitzgibbons P. L., Sherrod A., Chandrasoma P. T., and Martin S. E. (1989) Intermediate filament expression in astrocytic neoplasms.Am. J. Surg. Pathol. 13, 141–145.CrossRefGoogle Scholar
  25. Dahl D. (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination.J. Neurosci. Res. 6, 741–748.CrossRefGoogle Scholar
  26. Dahl D., Bignami A., Weber K., and Osborn M. (1981a) Filament proteins in rat optic nerves undergoing Wallerian degeneration: Localization of vimentin, the fibroblast 100-A filament protein, in normal and reactive astrocytes.Exp. Neurol. 73, 496–506.CrossRefGoogle Scholar
  27. Dahl D., Rueger D. C., Bignami A., Weber K., and Osborn M. (1981b) Vimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia.Eur. J. Cell Biol. 24, 191–196.PubMedGoogle Scholar
  28. Dahl D., Zapatka S., and Bignami A. (1986) Heterogeneity of desmin, the muscle-type intermediate filament protein, in blood vessels and astrocytes.Histochemistry 84, 143–150.CrossRefGoogle Scholar
  29. Dale B. A. (1977) Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis.Biochim. Biophys. Acta 491, 193–304.CrossRefGoogle Scholar
  30. Dale B. A., Resing K. A., and Haydock P. V. (1990) Filaggrins, inCellular and Molecular Biology of Intermediate Filaments, (Goldman R. D. and Steinert, P. M., eds.), Plenum, New York, pp. 393–412.CrossRefGoogle Scholar
  31. Daumas-Duport C., Scheithauer B., O’Fallon J., and Kelly P. (1988) Grading of astrocytomas: A simple and reproducible method.Cancer 62, 2152–2165.CrossRefGoogle Scholar
  32. Davis D. L., Hoel D., Fox J., and Lopez A. (1990) International trends in cancer motality in France, West Germany, Italy, Japan, England and Wales, and the USA.Lancet 336, 474–481.CrossRefGoogle Scholar
  33. Deck, J. H. N., Eng L. F., Bigbee J., and Woodcock S. M. (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors.Acta Neuropathol. 42, 183–190.CrossRefGoogle Scholar
  34. Duffy P. E., Graf L., and Rapport M. M. (1977) Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors.J. Neuropathol. Exp. Neurol. 36, 645–652.CrossRefGoogle Scholar
  35. Duffy P. E., Huang Y.-Y., and Rapport M. M. (1982) The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells.Exp. Cell Res. 139, 145–157.CrossRefGoogle Scholar
  36. Eng L. F. and Rubinstein L. J. (1978) Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors.J. Histochem. Cytochem. 26, 513–522.CrossRefGoogle Scholar
  37. Eng L. F., Vanderhaeghen J. J., Bignami A, and Gerstl B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Res. 28, 351–354.CrossRefGoogle Scholar
  38. Fedoroff S. (1986) Prenatal ontogenesis of astrocytes, inAstrocytes (Fedoroff S. and Vernadakis A., eds.), vol. 1, Academic, New York, pp. 35–74.CrossRefGoogle Scholar
  39. Fliegner K. H. and Liem R. K. H. (1991) Cellular and Molecular biology of neuronal intermediate filaments.Intl. Rev. Cytol. 131, 109–167.CrossRefGoogle Scholar
  40. Fiosner R. and Wiche G. (1991) Intermediate filament-associated proteins.Curr. Opin. Cell Biol. 3, 75–81.CrossRefGoogle Scholar
  41. Franko M. C., Gibbs C. J., Jr., Rhoades D. A., and Gajdusek D. C. (1987) Monoclonal antibody analysis of keratin expression in the central nervous system.Proc. Natl. Acad. Sci. USA 84, 3482–3485.CrossRefGoogle Scholar
  42. Fulling K. H. and Nelson J. S. (1984) Cerebral astrocytic neoplasms in the adult: Contribution of histologic examination to the assessment of prognosis.Semin. Diag. Pathol. 1, 152–163.Google Scholar
  43. Giordano S., Glasgow E., Tesser P., and Schechter N. (1989) A type II keratin is expressed in glial cells of the goldfish visual pathway.Neuron 2, 1507–1516.CrossRefGoogle Scholar
  44. Goldman A. E., Maul G., Steinert P. M., Yang H.-Y., and Goldman R. D. (1986) Keratin-like proteins that co-isolate with intermediate filaments of BHK-21 cells are nuclear lamins.Proc. Natl. Acad. Sci. USA 83, 3839–3843.CrossRefGoogle Scholar
  45. Goldman J. E., Schaumburg H. H., and Norton W. T. (1978) Isolation and characterization of glial filaments from human brain.J. Cell Biol. 78, 426–440.CrossRefGoogle Scholar
  46. Goldman R. D. and Steinert P. M. (eds.) (1990)Cellular and Molecular Biology of Intermediate Filaments, Plenum, New York.Google Scholar
  47. Goldman R. D., Goldman A. E., Green K. J., Jones J. C. R., Lieska N., and Yang H.-Y. (1985) Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface.Ann. NY Acad. Sci. 455, 1–17.CrossRefGoogle Scholar
  48. Goldman R. D., Goldman A. E., Green K., Jones J. C. R., Jones S. M., and Yang H.-Y. (1986) Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements.J. Cell Sci. Suppl. 5, 69–97.CrossRefGoogle Scholar
  49. Granger B. L. and Lazarides E. (1980) Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle.Cell 22, 727–738.CrossRefGoogle Scholar
  50. Gullota F., Schindler F., Schmutzler R., and Weeks-Seifert A. (1985) GFAP in brain tumor diagnosis: Possibilities and limitations.Path. Res. Pract. 180, 54–60.CrossRefGoogle Scholar
  51. Hamaya K., Doi K., Tanaka T, and Nishimoto A. (1985) The determination of glial fibrillary acidic protein for the diagnosis and histogenetic study of central nervous system tumors: A study of 152 cases.Acta Med. Okayama 39, 453–462.PubMedGoogle Scholar
  52. Herpers M. J. H. M., Budka H., and McCormick D. (1984) Production of glial fibrillary acidic protein (GFAP) by neoplastic cells: Adaptation to the micro-environment.Acta Neuropathol. 64, 333–338.CrossRefGoogle Scholar
  53. Herpers M. J. H. M., Ramaekers F. C. S., Aldeweireldt J., Moesker O., and Sloof J. (1986) Co-expression of glial fibrillary acidic protein- and vimentin-type intermediate filaments in human astrocytomas.Acta Neuropathol. 70, 333–339.CrossRefGoogle Scholar
  54. Houle J. and Fedoroff S. (1983) Temporal relationship between the appearance of vimentin and neural tube development.Dev. Brain Res. 9, 189–195.CrossRefGoogle Scholar
  55. Jackson B. W., Grund C., Schmid E., Burki K., Franke W. W., and Illmensee K. (1980) Formation of cytoskeletal elements during mouse embryogenesis.Differentiation 17, 161–179.CrossRefGoogle Scholar
  56. Jackson B. W., Grund C., Winter S., Franke W. W., and Illmensee K. (1981) Formation of cytoskeletal elements during mouse embryogenesis, II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos.Differentiation 20, 203–216.CrossRefGoogle Scholar
  57. Jones J. C. R. and Goldman R. D. (1985) Intermediate filaments and the initiation of desmosome assembly.J. Cell Biol. 101, 506–517.CrossRefGoogle Scholar
  58. Kernohan J. W. and Sayre G. P. (1952)Tumors of the Central Nervous System, Armed Forces Institute of Pathology, Washington, DC.Google Scholar
  59. Lawson D. (1983) Epinemin: A new protein associated with vimentin filaments in nonneural cells.J. Cell Biol. 97, 1891–1905.CrossRefGoogle Scholar
  60. Landry C. F., Ivy G. O., and Brown I. R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed byin situ hybridization.J. Neurosci. Res. 25, 194–203.CrossRefGoogle Scholar
  61. Lazarides E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 283, 249–253.CrossRefGoogle Scholar
  62. Lehtonen E., Lehto V.-P., Vartio T., Badley R. A., and Virtanen I. (1983) Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos.Dev. Biol. 100, 158–165.CrossRefGoogle Scholar
  63. Lendahl U., Zimmerman L. B., and McKay R. D. S. (1990) CNS stem cells express a new class of intermediate filament protein.Cell 60, 585–595.CrossRefGoogle Scholar
  64. Levitt P. and Rakic P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing Rhesus monkey brain.J. Comp. Neurol. 193, 815–840.CrossRefGoogle Scholar
  65. Lieska N., Yang H.-Y., and Goldman R. D. (1985) Purification of the 300k intermediate filament-associated protein and itsin vitro recombination with intermediate filaments.J. Cell Biol. 101, 802–813.CrossRefGoogle Scholar
  66. Lieska N., Shao D., Kriho V., and Yang H.-Y. (1991) Expression and distribution of cytoskeletal IFAP-300kDa as an index of lens cell differentiation.Curr. Eye Res 10, 1165–1174.CrossRefGoogle Scholar
  67. Lukas Z., Draber P., Bucek J., Draberova E., Viklicky V., and Staskova Z. (1989) Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord.Histochem. J. 21, 693–702.CrossRefGoogle Scholar
  68. Mangeat P. H. and Burridge K. (1984) Immunoprecipitation of non-erythrocyte spectrin within live cells following microinjection of spectrin antibodies: Relation of cytoskeletal structures.J. Cell Biol. 98, 1363–1377.CrossRefGoogle Scholar
  69. McDermott K. W. G. and Lantos P. L. (1989) The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain.Dev. Brain Res 45, 169–177.CrossRefGoogle Scholar
  70. McKeon F. D., Kirschner M. W., and Caput D. (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins.Nature 319, 463–468.CrossRefGoogle Scholar
  71. Miyata Y., Hoshi M., Nishida E., Minami Y., and Sakai H. (1986) Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70 kDa subunit protein.J. Biol. Chem. 261, 13026–13030.PubMedGoogle Scholar
  72. Nelson J. S., Tsukada Y., Schoenfeld D., Fulling K., Lamarche J., and Peress N. (1983) Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas.Cancer 52, 550–554.CrossRefGoogle Scholar
  73. Ng H-K and Lo S. T. H. (1989) Cytokeratin immunoreactivity in gliomas.Histopathology 14, 359–368.CrossRefGoogle Scholar
  74. Osborn M. and Weber K. (1982) Intermediate filaments: Cell type specific markers in differentiation and pathology.cell 31, 303–306.CrossRefGoogle Scholar
  75. Osborn M. and Weber K. (eds.) (1982)Cytoskeletal Proteins in Tumor Diagnosis, Cold Spring Harbor Laboratory, New York.Google Scholar
  76. Pappas G. D., Glick R. P., Shao D., Johnson-Seaton D., and Yang H.-Y. (1990) An intermediate filament-associated protein, IFAP-300kDa, as a marker for human astrocytomas.Soc. Neurosci. Abstr. 16, 350.Google Scholar
  77. Pixley S. K. R. and DeVellis J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Dev. Brain Res. 15, 201–209.CrossRefGoogle Scholar
  78. Price M. G. and Lazarides E. (1983) Expression of intermediate filament-associated protein paranemin and synemin in chicken development.J. Cell Biol. 97, 1860–1874.CrossRefGoogle Scholar
  79. Pytela R. and Wiche G. (1980) High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments.Proc. Natl. Acad. Sci. USA 77, 4808–4812.CrossRefGoogle Scholar
  80. Raju T., Bignami A., and Dahl D. (1981)In vivo andin vitro differentiation of neurons and astrocytes in the rat embryo.Dev. Biol. 85, 344–357.CrossRefGoogle Scholar
  81. Ringertz N. (1950) “Grading” of gliomas.Acta Pathol. Microbiol. Scand. 27, 51–64.CrossRefGoogle Scholar
  82. Rubinstein L. J. (1972)Tumors of the Central Nervous System, AFIP atlas of tumor pathology, Series 2, Fascicle 6, Armed Forces Institute of Pathology, Washington, DC.Google Scholar
  83. Rungger-Brandle E., Achtstatter T., and Franke W. W. (1989) An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes.J. Cell Biol. 109, 705–716.CrossRefGoogle Scholar
  84. Russell D. S. and Rubinstein L. J. (1989)Pathology of Tumours of the Nervous System, 5th ed., Williams and Wilkins, Baltimore.Google Scholar
  85. Schiffer D., Giordana M. T., Germano I., and Mauro A. (1986) Anaplasia and heterogeneity of GFAP expression in gliomas.Tumori 72, 163–170.CrossRefGoogle Scholar
  86. Schiffer D., Giordana M. T., Mauro A., Migheli A., Germano I., and Giaccone G. (1986b) Immunohistochemical demonstration of vimentin in human cerebral tumors.Acta Neuropathol. 70, 209–216.CrossRefGoogle Scholar
  87. Schiffer D., Giordana M. T., Mighili A., Giaccone G., Pezzotta S., and Mauro A. (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brian.Brain Res. 374, 110–118.CrossRefGoogle Scholar
  88. Schnitzer J., Franke W. W., and Schachner M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of the developing and adult mouse nervous system.J. Cell Biol. 90, 435–447.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Steinert P. M. and Roop D. R. (1988) Molecular and cellular biology of intermediate filaments.Annu. Rev. Biochem. 57, 593–625.CrossRefGoogle Scholar
  90. Svien H. J., Mabon R. F., Kernohan J. W., Adson A. W. (1949) Astrocytomas.Proc. Staff Meet. Mayo Clinic 24, 54–64.Google Scholar
  91. Tohyama T., Lee V. M.-Y., Rorke L. B., Marvin M., McKay R. D. G., and Trojanowski J. Q. (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells.Lab. Invest. 66, 303–313.PubMedGoogle Scholar
  92. Tohyama T., Lee V. M.-Y., and Trojanowski J. Q. (1993) Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines.Am. J. Pathol. 142, 883–892.Google Scholar
  93. Traub P. (1985)Intermediate Filaments: A Review. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  94. Tseng S. C. G., Jarvinen M. J., Nelson W. G., Huang J.-W., Woodcock-Mitchell J., and Sun T.-T. (1982) Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies.Cell 30, 361–372.CrossRefGoogle Scholar
  95. Velasco M. E., Dahl D., Roessmann U., and Gambetti P. (1980) Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms.Cancer 45, 484–494.CrossRefGoogle Scholar
  96. Wang E., Cairncross E. J., Yung W. K. S., Garber E. R., and Liem R. K. H. (1983) An intermediate filament-associated protein, p50, recognized by monoclonal antibodies.J. Cell Biol. 97, 1507–1514.CrossRefGoogle Scholar
  97. Wang E., Fischman D., Liem R. K. H., and Sun T.-T. (eds.), (1985)Intermediate Filaments. Ann. NY Acad. Sci., vol. 455.Google Scholar
  98. Weinstein D. E., Shelanski M. L., and Liem R. K. H. (1991) Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.J. Cell Biol. 112, 1205–1213.CrossRefGoogle Scholar
  99. Wiche G., Becker B., Luber K., Weitzer G., Castanon M. J., Hauptmann R., et al. (1991) Cloning and sequencing of rat plectin indicates a 466-kDa polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil.J. Cell Biol. 114, 83–99.CrossRefGoogle Scholar
  100. Yang H.-Y., Lieska N., Goldman A. E., and Goldman R. D. (1985) A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.J. Cell Biol. 100, 620–631.CrossRefGoogle Scholar
  101. Yang H.-Y., Lieska N., and Goldman R. D. (1990a) Intermediate filament-associated proteins, inCellular and Molecular Biology of Intermediate Filaments, (Goldman R. D. and Steinert P. M. eds.), Plenum, New York, pp. 371–391.CrossRefGoogle Scholar
  102. Yang H.-Y., Kriho V., Johnson-Seaton D., and Pappas G. D. (1990b) Expression of an intermediate filament-associated protein, IFAP-70/280kDa, in radial glia and in reactive astrocytes of rats.Soc. Neurosci. Abstr. 16, 352.Google Scholar
  103. Yang H.-Y., Lieska N., Goldman A. E., and Goldman R. D. (1992a) Colchicine-sensitive and colchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280KDa.Cell Motil. Cytoskeleton 22, 185–199.CrossRefGoogle Scholar
  104. Yang H.-Y., Lieska N., Goldman R. D., Johnson-Seaton D., and Pappas G. D. (1992b) Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein.Brain Res. 573, 161–168.CrossRefGoogle Scholar
  105. Yang H.-Y., Lieska N., Kriho V., Han J., and Pappas G. D. (1992c) Developmental-related expression of IFAP-300kDa in radial glia and their derivatives of rat spinal cord.Mol. Biol. Cell 3, Supplement, 357a.CrossRefGoogle Scholar
  106. Yang H.-Y., Lieska N., Glick R., Shao D., and Pappas G. D. (1993a) Expression of 300-kilodalton intermediate filament-associated protein distinguishes human glioma cells from normal astrocytes.Proc. Natl. Acad. Sci. USA 90, 8534–8537.CrossRefGoogle Scholar
  107. Yang H.-Y., Lieska N., Shao D., Kriho V., and Pappas G. D. (1993b) Immuno-typing of radial glia and their glial derivatives during development of the rat spinal cord.J. Neurocytol. 22, 558–571.CrossRefGoogle Scholar
  108. Yen S.-H. and Fields K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell Biol. 88, 115–126.CrossRefGoogle Scholar
  109. Yung W.-K. A., Luna M., and Borit A. (1985) Vimentin and glial fibrillary acidic protein in human brain tumors.J. Neuro-Oncol. 3, 35–38.CrossRefGoogle Scholar
  110. Zulch K. J. (1979)Histological Typing of Tumours of the Central Nervous System, World Health Organization, Geneva.Google Scholar
  111. Zulch K. J. (1986)Brain Tumors: Their Biology and Pathology, 3rd ed., Springer-Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Hsi-Yuan Yang
    • 1
  • Norman Lieska
    • 1
  • Deren Shao
    • 1
  • Virginia Kriho
    • 1
  • George D. Pappas
    • 1
  1. 1.Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago

Personalised recommendations