Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 88, Issue 2, pp 140–155 | Cite as

Four-dimensional symmetry from a broad viewpoint

VI. Quark confinement in ultraviolet-finite QCD
  • J. P. Hsu
Article

Summary

Within the four-dimensional framework of «common relativity», we can introduce a new principle of invariant and universal probability distribution, independent of spin property, for all quantized field oscillators to formulate finite and unitary field theories. Here we consider the gluon field as an exceptional case and postulate that its field oscillators can be pictured as a system of bosons, so that the distribution of the gluon oscillators takes the form of the Bose distribution. We show thata) the perturbative QCD is ultraviolet finite,b) the perturbative static potential of quarks is asymptotically linear inr, c) the force between two quarks vanishes rapidly asr→0. The origin of the asymptotically linear potential due to gluons stems from a quasi-condensation of the gluon oscillators which roughly resembles the Einstein condensation. But quarks cannot be confined by the perturbative linear potential due to the spin-one gluon because of the four-dimensional symmetry feature of the Dirac equation, in sharp contrast with the Schrödinger equation. However, if the asymptotically linear potential between quarks is due to a massless spin-zero field, then quarks can be confined. The four-dimensional framework of special relativity is too restrictive to allow these new concepts and results.

Keywords

PACS. 12.40 Models of strong interactions 

Riassunto

Nell’ambito quadridimensionale della «relatività comune» si può introdurre un nuovo principio di distribuzione di probabilità invariante e universale indipendente dalla probabilità di spin, per tutti gli oscillatori di campo quantizzati per, formulare teorie di campo finite e unitarie. Qui si considera il campo gluonico come un caso eccezionale e si ipotizza che i suoi oscillatori di campo possano essere descritti come un sistema di bosoni, cosicché la distribuzione di oscillatori gluonici assume la forma della distribuzione di Bose. Si mostra chea) il QCD perturbativo è ultravioletto finito,b) il potenziale statico perturbativo dei quark è asintoticamente lineare inr, c) la forza tra i due quark si annulla rapidamente perr→0. L’origine del potenziale asintoticamente lineare causato dai gluoni deriva da una quasi condensazione degli oscillatori gluonici che somiglia grosso modo alla condensazione di Einstein. Ma i quark non possono essere confinati dal potenziale lineare perturbativo a causa del gluone a spin 1 a causa del carattere di simmetria quadridimensionale dell’equazione di Dirac, in forte contrasto con l’equazione di Schrödinger. Comunque, se il potenziale asintoticamente lineare tra quark è dovuto a un campo senza massa e spin 0, allora i quark possono essere confinati. Il sistema quadridimensionale della relatività speciale è troppo restrittivo per permettere questi nuovi concetti e risultati.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. P. Hsu:Nuovo Cimento B,74, 67 (1983);75, 185 (1983);Phys. Lett. A,97, 137 (1983);Found. Phys.,8, 371 (1978);6, 317 _1976). See also the appendix of the next paper.ADSCrossRefGoogle Scholar
  2. (2).
    Nature Editorial, Nature,303, 129 (1983).Google Scholar
  3. (3).
    J. P. Hsu andT. N. Sherry:Found. Phys.,10, 57 (1980).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    J. P. Hsu:Nuovo Cimento B,78, 85 (1983);80, 183 (1984); see alsoPhys. Rev. D,24, 802 (1981) for tight confinement of quarks.ADSCrossRefGoogle Scholar
  5. (5).
    W. Marciano andH. Pagels:Phys. Rep. C,36, No. 3 (1978);J. D. Bjorken:Elements of quantum chromodynamics, SLAC-PUB-2372 (1979), unpublished.Google Scholar
  6. (6).
    L. D. Landau andE. M. Lifshitz:Statistical Physics (Addison-Wesley, Reading, Mass., 1958).zbMATHGoogle Scholar
  7. (7).
    T. Y. Wu:Thermodynamics, kinetic theory of gas, statistical mechanics, inTheoretical Physics, Vol.5 (Lien-Chin Publ. Co., Taipei, 1979), p. 419.Google Scholar
  8. (8).
    I. S. Gradshteyn andI. W. Ryzhik:Table of Integrals, Series and Products (Academic Press, New York, N. Y., 1965), p. 408.Google Scholar
  9. (9).
    I. M. Gel’fand, M. I. Graev andN. Ya. Vilenkin:Generalized Functions, Vol.1 (Academic Press, New York, N. Y., 1965), p. 363.Google Scholar
  10. (10).
    J. P. Hsu andJ. A. Underwood:Phys. Rev. D,12, 620 (1975).ADSCrossRefGoogle Scholar
  11. (11).
    This method of treating the photon mass in QED was discussed byJ. M. Jauch andF. Rohrlich:The Theory of Photons and Electrons, 2nd Edition (Addison-Wesley, Reading, Mass., 1959), p. 190. See alsoP. A. M. Dirac:Lectures on Quantum Field Theory, 2nd printing (Academic Press, New York, N. Y., 1967), p. 149;W. Heitler: inThe Quantum Theory of Fields, edited byR. Stoops (Academic Press, New York, N. Y., 1962).Google Scholar
  12. (12).
    For theU 1 case with a linear potential in the Dirac equation, seeJ. F. Gunion andL. F. Li:Phys. Rev. D,12, 3583 (1975);D. W. Rein:Nuovo Cimento A,38, 19 (1977).ADSCrossRefGoogle Scholar
  13. (13).
    H. B. Ai andJ. P. Hsu:Found. Phys., to be published.Google Scholar
  14. (14).
    P. A. M. Dirac:The Principles of Quantum Mechanics, 4th Edition (Oxford University Press, London, 1958), p. 265.Google Scholar
  15. (15).
    The nonexistence of quark bound state, can be shown to hold also for theSU3 case whenA08=Vg(r) andA0a=0,a=1, 2, ..., 7.Google Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • J. P. Hsu
    • 1
    • 2
  1. 1.Physics DepartmentSoutheastern Massachusetts UniversityNorth Dartmouth
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations