Advertisement

Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy highTc superconductors

  • M. S. Awan
  • M. Maqsood
  • S. A. Mirza
  • M. Yousaf
  • A. Maqsood
Article

Abstract

(Bi1-xPbx:)2Sr2Ca2Cu3Oy (x = 0.3) high critical transition temperature (Tc) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a highTc phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the highTc phase were determined asa = 0.537(1) nm,b = 0.539(1) nm, andc = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

Keywords

superconductivity dc electrical resistivity ac magnetic susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz and K.A. Muller,Z. Phys. B, Vol 64, 1986, p 189CrossRefGoogle Scholar
  2. 2.
    N. Shun-Ichi, O. Hiroshi, I. Ienari, and Y Ryozo,Jpn. J. Appl. Phys., VOL28, 1989, pL27CrossRefGoogle Scholar
  3. 3.
    S.A. Sunshine,Phys. Rev. B, Vol 38, 1988, p 893CrossRefGoogle Scholar
  4. 4.
    T. Hatano, K. Aota, S. Idea, K. Nakamura, and K. Ogawa,Jpn. J. Appl. Phys., Vol 27, p L2055Google Scholar
  5. 5.
    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y Miura, Y Ikeda, Y Tomii, and H. Mazaki,Jpn. J. Appl. Phys., Vol 27,1988, p L1041CrossRefGoogle Scholar
  6. 6.
    K. Togano, H. Kumakura, H. Meada, E. Yanagisawa, and K. Takahasi,Appl. Phys. Lett., Vol 53,1988, p 1329CrossRefGoogle Scholar
  7. 7.
    S.K. Dew, N.R. Osborne, PJ. Mulhem, and R.R. Parsons,Appl. Phys. Lett., Vol 54, 1989, p 1929CrossRefGoogle Scholar
  8. 8.
    A. Maqsood, N.M. Bhatti, S. Ali, and I. Haq,J. Mater Res. Bull., Vol 25, 1990, p 779CrossRefGoogle Scholar
  9. 9.
    A. Maqsood, S. Ali, M. Maqsood, I. Haq, and M. Khaliq,J. Mater Sci.,Vol 27, 1992, p 2363CrossRefGoogle Scholar
  10. 10.
    H. Kuper, I. Apfelstedt, R. Flukiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf,Cryogenics, Vol 28, 1988, p 650CrossRefGoogle Scholar
  11. 11.
    M.S. Awan, M. Maqsood, G. Shabbir, A. Maqsood, S.A. Mirza, and S.A. Siddiqui,J. Mater Sci. Lett., Vol 13, 1994, p 741CrossRefGoogle Scholar
  12. 12.
    A. Ono,Jpn. J. Appl. Phys., Vo1 27, 1988, p L2276CrossRefGoogle Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • M. S. Awan
    • 1
  • M. Maqsood
    • 1
  • S. A. Mirza
    • 1
  • M. Yousaf
    • 1
  • A. Maqsood
    • 1
  1. 1.Thermal Physics Laboratory, Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations